ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge of the molecular frontier levels alignment in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbates highest occupied molecular orbital (HOMO) levels relative to the substrates va lence band maximum (VBM) in the interface describes the favorability of photogenerated hole transfer from the VBM to the adsorbed molecule. This is a key quantity for assessing and comparing H$_2$O photooxidation activities on two prototypical photocatalytic TiO$_2$ surfaces: anatase (A)-TiO$_2$(101) and rutile (R)-TiO$_2$(110). Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) $G_0W_0$ calculations, we assess the relative photocatalytic activity of intact and dissociated H$_2$O on coordinately unsaturated (Ti$_{textit{cus}}$) sites of idealized stoichiometric A-TiO$_2$(101)/R-TiO$_2$(110) and bridging O vacancies (O$_{textit{br}}^{textit{vac}}$) of defective A-TiO$_{2-x}$(101)/R-TiO$_{2-x}$(110) surfaces ($x=frac{1}{4},frac{1}{8}$) for various coverages. Such a many-body treatment is necessary to correctly describe the anisotropic screening of electron-electron interactions at a photocatalytic interface, and hence obtain accurate interfacial level alignments. The more favorable ground state HOMO level alignment for A-TiO$_2$(101) may explain why the anatase polymorph shows higher photocatalytic activities than the rutile polymorph. Our results indicate that (1) hole trapping is more favored on A-TiO$_2$(101) than R-TiO$_2$(110) and (2) HO@Ti$_{textit{cus}}$ is more photocatalytically active than intact H$_2$O@Ti$_{textit{cus}}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا