ترغب بنشر مسار تعليمي؟ اضغط هنا

We have synthesized a novel europium bismuth sulfofluoride, Eu3Bi2S4F4, by solid-state reactions in sealed evacuated quartz ampoules. The compound crystallizes in a tetragonal lattice (space group I4/mmm, a = 4.0771(1) A, c = 32.4330(6) A, and Z = 2) , in which CaF2-type Eu3F4 layers and NaCl-like BiS2 bilayers stack alternately along the crystallographic c axis. There are two crystallographically distinct Eu sites, Eu(1) and Eu(2) at the Wyckoff positions 4e and 2a, respectively. Our bond-valence-sum calculation, based on the refined structural data, indicates that Eu(1) is essentially divalent, whilst Eu(2) has an average valence of +2.64(5). This anomalous Eu valence state is further confirmed and supported, respectively, by Mossbauer and magnetization measurements. The Eu3+ components donate electrons into the conduction bands that are mainly composed of Bi- 6px and 6py states. Consequently, the material itself shows metallic conduction, and superconducts at 1.5 K without extrinsic chemical doping.
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW -like transition occurs at 280 K, below which SC emerges at 0.3 K, without any extrinsic doping. The Eu ions were found to exhibit an anomalously temperature-independent mixed valence of about +2.2, associated with the formation of CDW. The mixed valence of Eu gives rise to self electron doping into the conduction bands mainly consisting of the in-plane Bi-6$p$ states, which in turn brings about the CDW and SC. In particular, the electronic specific-heat coefficient is enhanced by ~ 50 times, owing to the significant hybridizations between Eu-4$f$ and Bi-6$p$ electrons, as verified by band-structure calculations. Thus, EuBiS$_2$F manifests itself as an unprecedented material that simultaneously accommodates SC, CDW and $f$-electron valence instability.
We have performed an isovalent substitution study in a layered titanium oxypnictide system BaTi$_{2}$(Sb$_{1-x}$Bi$_{x}$)$_{2}$O (0$leq xleq$ 0.40) by the measurements of x-ray diffraction, electrical resistivity and magnetic susceptibility. The pare nt compound BaTi$_{2}$Sb$_{2}$O is confirmed to exhibit superconductivity at 1.5 K as well as charge- or spin-density wave (CDW/SDW) ordering below 55 K. With the partial substitution of Sb by Bi, the lattice parameters $a$, $c$ and $c/a$ all increase monotonically, indicating negative chemical pressure and lattice distortion on the (super)conducting Ti$_2$Sb$_2$O-layers. The Bi doping elevates the superconducting transition temperature to its maximum $T_c$=3.7 K at $x=$0.17, and then $T_c$ decreases gradually with additional Bi doping. A metal-to-nonmetal transition takes place around $x$=0.3, and superconductivity at $sim$1K exists at the nonmetal side. The CDW/SDW anomaly, in comparison, is rapidly suppressed by the Bi doping, and vanishes for $xgeq$0.17. The results are discussed in terms of negative chemical pressure and disorder effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا