ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - Hui Lu , Zhiyong Wu , Xixin Wu 2021
This paper describes a variational auto-encoder based non-autoregressive text-to-speech (VAENAR-TTS) model. The autoregressive TTS (AR-TTS) models based on the sequence-to-sequence architecture can generate high-quality speech, but their sequential d ecoding process can be time-consuming. Recently, non-autoregressive TTS (NAR-TTS) models have been shown to be more efficient with the parallel decoding process. However, these NAR-TTS models rely on phoneme-level durations to generate a hard alignment between the text and the spectrogram. Obtaining duration labels, either through forced alignment or knowledge distillation, is cumbersome. Furthermore, hard alignment based on phoneme expansion can degrade the naturalness of the synthesized speech. In contrast, the proposed model of VAENAR-TTS is an end-to-end approach that does not require phoneme-level durations. The VAENAR-TTS model does not contain recurrent structures and is completely non-autoregressive in both the training and inference phases. Based on the VAE architecture, the alignment information is encoded in the latent variable, and attention-based soft alignment between the text and the latent variable is used in the decoder to reconstruct the spectrogram. Experiments show that VAENAR-TTS achieves state-of-the-art synthesis quality, while the synthesis speed is comparable with other NAR-TTS models.
Machine learning based interatomic potential energy surface (PES) models are revolutionizing the field of molecular modeling. However, although much faster than electronic structure schemes, these models suffer from a lower efficiency as compared to typical empirical force fields due to more sophisticated computations involved. Herein, we report a model compression scheme for boosting the performance of the Deep Potential (DP) model, a deep learning based PES model. This scheme, we call DP Compress, is an efficient post-processing step after the training of DP models (DP Train). DP Compress combines several DP-specific compression techniques, which typically speed up DP- based molecular dynamics simulations by an order of magnitude faster, and consume an order of magnitude less memory. We demonstrate that DP Compress is sufficiently accurate by testing a variety of physical properties of Cu, H2O, and Al-Cu-Mg systems. DP Compress applies to both CPU and GPU machines and is publicly available at https://github.com/deepmodeling/deepmd-kit.
This paper outlines reduced-order models for grid-forming virtual-oscillator-controlled inverters with nested current- and voltage-control loops, and current-limiting action for over-current protection. While a variety of model-reduction methods have been proposed to tame complexity in inverter models, previous efforts have not included the impact of current-reference limiting. In addition to acknowledging the current-limiting action, the reduced-order models we outline are tailored to networks with resistive and inductive interconnecting lines. Our analytical approach is centered on a smooth function approximation for the current-reference limiter, participation factor analysis to identify slow- and fast-varying states, and singular perturbation to systematically eliminate the fast states. Computational benefits and accuracy of the reduced-order models are benchmarked via numerical simulations that compare them to higher-order averaged and switched models.
29 - YiPeng Deng , YinHui Luo 2021
In this paper we show how to process the NOTAM (Notice to Airmen) data of the field in civil aviation. The main research contents are as follows: 1.Data preprocessing: For the original data of the NOTAM, there is a mixture of Chinese and English, and the structure is poor. The original data is cleaned, the Chinese data and the English data are processed separately, word segmentation is completed, and stopping-words are removed. Using Glove word vector methods to represent the data for using a custom mapping vocabulary. 2.Decoupling features and classifiers: In order to improve the ability of the text classification model to recognize minority samples, the overall model training process is decoupled from the perspective of the algorithm as a whole, divided into two stages of feature learning and classifier learning. The weights of the feature learning stage and the classifier learning stage adopt different strategies to overcome the influence of the head data and tail data of the imbalanced data set on the classification model. Experiments have proved that the use of decoupling features and classifier methods based on the neural network classification model can complete text multi-classification tasks in the field of civil aviation, and at the same time can improve the recognition accuracy of the minority samples in the data set.
Physical systems with gain and loss can be described by a non-Hermitian Hamiltonian, which is degenerated at the exceptional points (EPs). Many new and unexpected features have been explored in the non-Hermitian systems with a great deal of recent in terest. One of the most fascinating features is that, chiral state conversion appears when one EP is encircled dynamically. Here, we propose an easy-controllable levitated microparticle system that carries a pair of EPs and realize slow evolution of the Hamiltonian along loops in the parameter plane. Utilizing the controllable rotation angle, gain and loss coefficients, we can control the structure, size and location of the loops in situ. We demonstrate that, under the joint action of topological structure of energy surfaces and nonadiabatic transitions (NATs), the chiral behavior emerges both along a loop encircling an EP and even along a straight path away from the EP. This work broadens the range of parameter space for the chiral state conversion, and proposes a useful platform to explore the interesting properties of exceptional points physics.
For clinical studies with continuous outcomes, when the data are potentially skewed, researchers may choose to report the whole or part of the five-number summary (the sample median, the first and third quartiles, and the minimum and maximum values), rather than the sample mean and standard deviation. For the studies with skewed data, if we include them in the classical meta-analysis for normal data, it may yield misleading or even wrong conclusions. In this paper, we develop a flow chart and three new tests for detecting the skewness of data from the sample size and the five-number summary. Simulation studies demonstrate that our new tests are able to control the type I error rates, and meanwhile provide good statistical power. A real data example is also analyzed to demonstrate the usefulness of the skewness tests in meta-analysis and evidence-based practice.
106 - Denghui Lu , Han Wang , Mohan Chen 2020
We present the GPU version of DeePMD-kit, which, upon training a deep neural network model using ab initio data, can drive extremely large-scale molecular dynamics (MD) simulation with ab initio accuracy. Our tests show that the GPU version is 7 time s faster than the CPU version with the same power consumption. The code can scale up to the entire Summit supercomputer. For a copper system of 113, 246, 208 atoms, the code can perform one nanosecond MD simulation per day, reaching a peak performance of 86 PFLOPS (43% of the peak). Such unprecedented ability to perform MD simulation with ab initio accuracy opens up the possibility of studying many important issues in materials and molecules, such as heterogeneous catalysis, electrochemical cells, irradiation damage, crack propagation, and biochemical reactions.
When reporting the results of clinical studies, some researchers may choose the five-number summary (including the sample median, the first and third quartiles, and the minimum and maximum values) rather than the sample mean and standard deviation, p articularly for skewed data. For these studies, when included in a meta-analysis, it is often desired to convert the five-number summary back to the sample mean and standard deviation. For this purpose, several methods have been proposed in the recent literature and they are increasingly used nowadays. In this paper, we propose to further advance the literature by developing a smoothly weighted estimator for the sample standard deviation that fully utilizes the sample size information. For ease of implementation, we also derive an approximation formula for the optimal weight, as well as a shortcut formula for the sample standard deviation. Numerical results show that our new estimator provides a more accurate estimate for normal data and also performs favorably for non-normal data. Together with the optimal sample mean estimator in Luo et al., our new methods have dramatically improved the existing methods for data transformation, and they are capable to serve as rules of thumb in meta-analysis for studies reported with the five-number summary. Finally for practical use, an Excel spreadsheet and an online calculator are also provided for implementing our optimal estimators.
There is an immense effort in search for various types of Weyl semimetals, of which the most fundamental phase consists of the minimal number of i.e. two Weyl points, but is hard to engineer in solids. Here we demonstrate how such fundamental Weyl se mimetal can be realized in a maneuverable optical Raman lattice, with which the three-dimensional (3D) spin-orbit (SO) coupling is synthesised for ultracold atoms. In addition, a new novel Weyl phase with coexisting Weyl nodal points and nodal ring is also predicted here, and is shown to be protected by nontrivial linking numbers. We further propose feasible techniques to precisely resolve 3D Weyl band topology through 2D equilibrium and dynamical measurements. This work leads to the first realization of the most fundamental Weyl semimetal band and the 3D SO coupling for ultracold quantum gases, which are respectively the significant issues in the condensed matter and ultracold atom physics.
In order to overcome the inherent latency in multi-user unmanned aerial vehicle (UAV) networks with orthogonal multiple access (OMA). In this paper, we investigate the UAV enabled uplink non-orthogonal multiple access (NOMA) network, where a UAV is d eployed to collect the messages transmitted by ground users. In order to maximize the sum rate of all users and to meet the quality of service (QoS) requirement, we formulate an optimization problem, in which the UAV deployment position and the power control are jointly optimized. This problem is non-convex and some variables are binary, and thus it is a typical NP hard problem. In this paper, an iterative algorithm is proposed with the assistance of successive convex approximate (SCA) technique and the penalty function method. In order to reduce the high computational complexity of the iterative algorithm, a low complexity approximation algorithm is then proposed, which can achieve a similar performance compared to the iterative algorithm. Compared with OMA scheme and conventional NOMA scheme, numerical results show that our proposed algorithms can efficiently improve the sum rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا