ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of ethylene autoignition and Deflagration-to-Detonation Transition (DDT) in a one-dimensional shock tube are numerically investigated using a skeletal chemistry including 10 species and 10 reactions. Different combustion modes are investigat ed through considering various premixed gas equivalence ratios (0.2 to 2.0) and incident shock wave Mach numbers (1.8 to 3.2). Four ignition and DDT modes are observed from the studied cases, i.e., no ignition, deflagration combustion, detonation after reflected shock and deflagration behind the incident shock. For detonation development behind the reflected shock, three autoignition hot spots are formed. The first one occurs at the wall surface after the re-compression of the reflected shock and contact surface, which further develops to a reaction shock because of the explosion in the explosion regime. The other two are off the wall, respectively caused by the reflected shock rarefaction wave interaction and reaction induction in the compressed mixture. The last hot spot develops to a reaction wave and couples with the reflected shock after a DDT process, which eventually leads to detonation combustion. For deflagration development behind the reflected shock, the wave interactions, wall surface autoignition hot spot as well as its induction of reaction shock are qualitatively similar to the mode of detonation after incident shock reflection, before the reflected shock rarefaction wave collision point. However, only one hot spot is induced after the collision, which also develops to a reaction wave but cannot catch up with the reflected shock. For deflagration behind the incident shock, deflagration combustion is induced by the incident shock compression whereas detonation occurs after the shock reflection.
Evolution of fuel droplet evaporation zone and its interaction with the propagating flame front are studied in this work. A general theory is developed to describe the evolutions of flame propagation speed, flame temperature, droplet evaporation onse t and completion locations in ignition and propagation of spherical flames. The influences of liquid droplet mass loading, heat exchange coefficient (or evaporation rate) and Lewis number on spherical spray flame ignition are studied. Two flame regimes are considered, i.e., heterogeneous and homogeneous flames, based on the mixture condition near the flame front. The results indicate that the spray flame trajectories are considerably affected by the ignition energy addition. The critical condition for successful ignition for the fuel-rich mixture is coincidence of inner and outer flame balls from igniting kernel and propagating flame. The flame balls always exist in homogeneous mixtures, indicating that ignition failure and critical successful events occur only in purely gaseous mixture. The fuel droplets have limited effects on minimum ignition energy, which however increases monotonically with the Lewis number. Moreover, flame kernel originates from heterogeneous mixtures due to the initially dispersed droplets near the spark. The evaporative heat loss in the burned and unburned zones of homogeneous and heterogeneous spray flames is also evaluated, and the results show that for the failed flame kernels, evaporative heat loss behind and before the flame front first increases and then decreases. The evaporative heat loss before the flame front generally increases, although non-monotonicity exists, when the flame is successfully ignited and propagate outwardly. For heterogeneous flames, the ratio of the heat loss from the burned zone to the total one decreases as the flame expands.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian method are performed to study the interactions between propagating shocks and dispersed evaporating water droplets. Two-way coupling for exchanges of mass, momentum, energy and vapour species is adopted for the dilute two-phase gas-droplet flows. Interphase interactions and droplet breakup dynamics are investigated with initial droplet diameters of 30, 50, 70 and 90 {mu}m under an incident shock wave Mach number of 1.3. Novel two-phase flow phenomena are observed when droplet breakup occurs. First, droplets near the two-phase contact surface show obvious dispersed distribution because of the reflected pressure wave that propagates in the reverse direction of the leading shock. The reflected pressure wave grows stronger for larger droplets. Second, spatial oscillations of the gas phase pressure, droplet quantities (e.g., diameter and net force) and two-phase interactions (e.g., mass, momentum, and energy exchange), are observed in the post-shock region when droplet breakup occurs, which are caused by shock / droplet interactions. Third, the spatial distribution of droplets (i.e., number density, volume fraction) also shows strong oscillation in the post-shock region when droplet breakup occurs, which is caused by the oscillating force exerted on the droplets.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
Propagation of weakly stretched spherical flames in partially pre-vaporized fuel sprays is theoretically investigated in this work. A general theory is developed to describe flame propagation speed, flame temperature, droplet evaporation onset and co mpletion locations. The influences of liquid fuel and gas mixture properties on spherical spray flame propagation are studied. The results indicate that the spray flame propagation speed is enhanced with increased droplet mass loading and/or evaporation heat exchange coefficient (or evaporation rate). Opposite trends are found when the latent heat is high, due to strong evaporation heat absorption. Fuel vapor and temperature gradients are observed in the post-flame evaporation zone of heterogeneous flames. Evaporation completion front location considerably changes with flame radius, but the evaporation onset location varies little relative to the flame front when the flame propagates. For larger droplet loading and smaller evaporation rate, the fuel droplet tends to complete evaporation behind the flame front. Flame bifurcation occurs with high droplet mass loading under large latent heat, leading to multiplicity of flame propagation speed, droplet evaporation onset and completion fronts. The flame enhancement or weakening effects by the fuel droplet sprays are revealed by enhanced or suppressed heat and mass diffusion process in the pre-flame zone. Besides, for heterogeneous flames, heat and mass diffusion in the post-flame zone also exists. The mass diffusion for both homogeneous and heterogeneous flames is enhanced with decreased Lewis number. The magnitude of Markstein length is considerably reduced with increased droplet loading. Moreover, post-flame droplet burning behind heterogeneous flame influences the flame propagation speed and Markstein length when the liquid fuel loading is relatively low.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا