ترغب بنشر مسار تعليمي؟ اضغط هنا

The half-skyrmions that appear in dense baryonic matter when skyrmions are put on crystals modify drastically hadron properties in dense medium and affect strongly the nuclear tensor forces, thereby influencing the equation of state (EoS) of dense nu clear and asymmetric nuclear matter. The matter comprised of half skyrmions has vanishing quark condensate but non-vanishing pion decay constant and could be interpreted as a hadronic dual of strong-coupled quark matter. We infer from this observation combined with certain predictions of hidden local symmetry in low-energy hadronic interactionsa a set of new scaling laws -- called new-BR -- for the parameters in nuclear effective field theory controlled by renormalization-group flow. They are subjected to the EoS of symmetric and asymmetric nuclear matter, and are then applied to nuclear symmetry energies and properties of compact stars. The changeover from the skyrmion matter to a half-skyrmion matter that takes place after the cross-over density $n_{1/2}$ provides a simple and natural field theoretic explanation for the change of the EoS from soft to stiff at a density above that of nuclear matter required for compact stars as massive as $sim 2.4M_odot$. Cross-over density in the range $1.5n_0 lsim n_{1/2} lsim 2.0 n_0$ has been employed, and the possible skyrmion half-skyrmion coexistence {or cross-over} near $n_{1/2}$ is discussed. The novel structure of {the tensor forces and} the EoS obtained with the new-BR scaling is relevant for neutron-rich nuclei and compact star matter and could be studied in RIB (rare isotope beam) machines.
We study the equation of state of neutron matter using a family of unitarity potentials all of which are constructed to have infinite $^1S_0$ scattering lengths $a_s$. For such system, a quantity of much interest is the ratio $xi=E_0/E_0^{free}$ wher e $E_0$ is the true ground-state energy of the system, and $E_0^{free}$ is that for the non-interacting system. In the limit of $a_sto pm infty$, often referred to as the unitary limit, this ratio is expected to approach a universal constant, namely $xisim 0.44(1)$. In the present work we calculate this ratio $xi$ using a family of hard-core square-well potentials whose $a_s$ can be exactly obtained, thus enabling us to have many potentials of different ranges and strengths, all with infinite $a_s$. We have also calculated $xi$ using a unitarity CDBonn potential obtained by slightly scaling its meson parameters. The ratios $xi$ given by these different unitarity potentials are all close to each other and also remarkably close to 0.44, suggesting that the above ratio $xi$ is indifferent to the details of the underlying interactions as long as they have infinite scattering length. A sum-rule and scaling constraint for the renormalized low-momentum interaction in neutron matter at the unitary limit is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا