ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of selfgravity and to cover the pa rameter space comprising three different sound speeds and three different arm strengths. The results are confronted with those data observed at wavelengths of 8 $mu$m and 21 cm. In the outer disk, the ring-like structure observed in 8 $mu$m image is consistent with the response of cold neutral medium with an effective sound speed 7 km s$^{-1}$, while for the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s$^{-1}$. Simulations with single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. This justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of observed arm strength toward larger amplitudes.
The regular satellites found around Neptune ($approx 17~M_{Earth}$) and Uranus ($approx 14.5~M_{Earth}$) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets ($< 17~M_{Earth}$). These di sks have been shown to be cool, optically thin, quiescent, with low surface density and low viscosity. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.
Aside from the grand-design stellar spirals appearing in the disk of M81, a pair of stellar spiral arms situated well inside the bright bulge of M81 has been recently discovered by Kendall et al. (2008). The seemingly unrelated pairs of spirals pose a challenge to the theory of spiral density waves. To address this problem, we have constructed a three component model for M81, including the contributions from a stellar disk, a bulge, and a dark matter halo subject to observational constraints. Given this basic state for M81, a modal approach is applied to search for the discrete unstable spiral modes that may provide an understanding for the existence of both spiral arms. It is found that the apparently separated inner and outer spirals can be interpreted as a single trailing spiral mode. In particular, these spirals share the same pattern speed 25.5 km s$^{-1}$ kpc$^{-1}$ with a corotation radius of 9.03 kpc. In addition to the good agreement between the calculated and the observed spiral pattern, the variation of the spiral amplitude can also be naturally reproduced.
NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ri ng extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_sun$ yr$^{-1}$ into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.
We present a new systematic way of setting up galactic gas disks based on the assumption of detailed hydrodynamic equilibrium. To do this, we need to specify the density distribution and the velocity field which supports the disk. We first show that the required circular velocity has no dependence on the height above or below the midplane so long as the gas pressure is a function of density only. The assumption of disks being very thin enables us to decouple the vertical structure from the radial direction. Based on that, the equation of hydrostatic equilibrium together with the reduced Poisson equation leads to two sets of second-order non-linear differential equation, which are easily integrated to set-up a stable disk. We call one approach `density method and the other one `potential method. Gas disks in detailed balance are especially suitable for investigating the onset of the gravitational instability. We revisit the question of global, axisymmetric instability using fully three-dimensional disk simulations. The impact of disk thickness on the disk instability and the formation of spontaneously induced spirals is studied systematically with or without the presence of the stellar potential. In our models, the numerical results show that the threshold value for disk instability is shifted from unity to 0.69 for self-gravitating thick disks and to 0.75 for combined stellar and gas thick disks. The simulations also show that self-induced spirals occur in the correct regions and with the right numbers as predicted by the analytic theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا