ترغب بنشر مسار تعليمي؟ اضغط هنا

Outlier detection is one of the most popular and continuously rising topics in the data mining field due to its crucial academic value and extensive industrial applications. Among different settings, unsupervised outlier detection is the most challen ging and practical one, which attracts tremendous efforts from diverse perspectives. In this paper, we consider the score-based outlier detection category and point out that the performance of current outlier detection algorithms might be further boosted by score propagation. Specifically, we propose Infinite Propagation of Outlier Factor (iPOF) algorithm, an extremely and excitingly simple outlier detection booster via infinite propagation. By employing score-based outlier detectors for initialization, iPOF updates each data points outlier score by averaging the outlier factors of its nearest common neighbors. Extensive experimental results on numerous datasets in various domains demonstrate the effectiveness and efficiency of iPOF significantly over several classical and recent state-of-the-art methods. We also provide the parameter analysis on the number of neighbors, the unique parameter in iPOF, and different initial outlier detectors for general validation. It is worthy to note that iPOF brings in positive improvements ranging from 2% to 46% on the average level, and in some cases, iPOF boosts the performance over 3000% over the original outlier detection algorithm.
In this paper, we focus on the fairness issues regarding unsupervised outlier detection. Traditional algorithms, without a specific design for algorithmic fairness, could implicitly encode and propagate statistical bias in data and raise societal con cerns. To correct such unfairness and deliver a fair set of potential outlier candidates, we propose Deep Clustering based Fair Outlier Detection (DCFOD) that learns a good representation for utility maximization while enforcing the learnable representation to be subgroup-invariant on the sensitive attribute. Considering the coupled and reciprocal nature between clustering and outlier detection, we leverage deep clustering to discover the intrinsic cluster structure and out-of-structure instances. Meanwhile, an adversarial training erases the sensitive pattern for instances for fairness adaptation. Technically, we propose an instance-level weighted representation learning strategy to enhance the joint deep clustering and outlier detection, where the dynamic weight module re-emphasizes contributions of likely-inliers while mitigating the negative impact from outliers. Demonstrated by experiments on eight datasets comparing to 17 outlier detection algorithms, our DCFOD method consistently achieves superior performance on both the outlier detection validity and two types of fairness notions in outlier detection.
Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised fe ature selection algorithms do not have fairness considerations and suffer from a high risk of amplifying discrimination by selecting features that are over associated with protected attributes such as gender, race, and ethnicity. In this paper, we make an initial investigation of the fairness-aware unsupervised feature selection problem and develop a principled framework, which leverages kernel alignment to find a subset of high-quality features that can best preserve the information in the original feature space while being minimally correlated with protected attributes. Specifically, different from the mainstream in-processing debiasing methods, our proposed framework can be regarded as a model-agnostic debiasing strategy that eliminates biases and discrimination before downstream learning algorithms are involved. Experimental results on multiple real-world datasets demonstrate that our framework achieves a good trade-off between utility maximization and fairness promotion.
Image generation has raised tremendous attention in both academic and industrial areas, especially for the conditional and target-oriented image generation, such as criminal portrait and fashion design. Although the current studies have achieved prel iminary results along this direction, they always focus on class labels as the condition where spatial contents are randomly generated from latent vectors. Edge details are usually blurred since spatial information is difficult to preserve. In light of this, we propose a novel Spatially Constrained Generative Adversarial Network (SCGAN), which decouples the spatial constraints from the latent vector and makes these constraints feasible as additional controllable signals. To enhance the spatial controllability, a generator network is specially designed to take a semantic segmentation, a latent vector and an attribute-level label as inputs step by step. Besides, a segmentor network is constructed to impose spatial constraints on the generator. Experimentally, we provide both visual and quantitative results on CelebA and DeepFashion datasets, and demonstrate that the proposed SCGAN is very effective in controlling the spatial contents as well as generating high-quality images.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا