ترغب بنشر مسار تعليمي؟ اضغط هنا

Given a set of unlabeled images or (image, text) pairs, contrastive learning aims to pre-train an image encoder that can be used as a feature extractor for many downstream tasks. In this work, we propose EncoderMI, the first membership inference meth od against image encoders pre-trained by contrastive learning. In particular, given an input and a black-box access to an image encoder, EncoderMI aims to infer whether the input is in the training dataset of the image encoder. EncoderMI can be used 1) by a data owner to audit whether its (public) data was used to pre-train an image encoder without its authorization or 2) by an attacker to compromise privacy of the training data when it is private/sensitive. Our EncoderMI exploits the overfitting of the image encoder towards its training data. In particular, an overfitted image encoder is more likely to output more (or less) similar feature vectors for two augmente
208 - Fangzhou Wang , Hongbin Li , 2021
Intelligent reflecting surface (IRS) is a promising technology being considered for future wireless communications due to its ability to control signal propagation. This paper considers the joint active and passive beamforming problem for an IRS-assi sted radar, where multiple IRSs are deployed to assist the surveillance of multiple targets in cluttered environments. Specifically, we aim to maximize the minimum target illumination power at multiple target locations by jointly optimizing the active beamformer at the radar transmitter and the passive phase-shift matrices at the IRSs, subject to an upperbound on the clutter power at each clutter scatterer. The resulting optimization problem is nonconvex and solved with a sequential optimization procedure along with semedefinite relaxation (SDR). Simulation results show that IRSs can help create effective line-of-sight (LOS) paths and thus substantially improve the radar robustness against target blockage.
We study a practical domain adaptation task, called source-free unsupervised domain adaptation (UDA) problem, in which we cannot access source domain data due to data privacy issues but only a pre-trained source model and unlabeled target data are av ailable. This task, however, is very difficult due to one key challenge: the lack of source data and target domain labels makes model adaptation very challenging. To address this, we propose to mine the hidden knowledge in the source model and exploit it to generate source avatar prototypes (i.e., representative features for each source class) as well as target pseudo labels for domain alignment. To this end, we propose a Contrastive Prototype Generation and Adaptation (CPGA) method. Specifically, CPGA consists of two stages: (1) prototype generation: by exploring the classification boundary information of the source model, we train a prototype generator to generate avatar prototypes via contrastive learning. (2) prototype adaptation: based on the generated source prototypes and target pseudo labels, we develop a new robust contrastive prototype adaptation strategy to align each pseudo-labeled target data to the corresponding source prototypes. Extensive experiments on three UDA benchmark datasets demonstrate the effectiveness and superiority of the proposed method.
91 - Jun Fang , Bin Wang , Hongbin Li 2021
Cognitive radio (CR) is a promising technology enabling efficient utilization of the spectrum resource for future wireless systems. As future CR networks are envisioned to operate over a wide frequency range, advanced wideband spectrum sensing (WBSS) capable of quickly and reliably detecting idle spectrum bands across a wide frequency span is essential. In this article, we provide an overview of recent advances on sub-Nyquist sampling-based WBSS techniques, including compressed sensing-based methods and compressive covariance sensing-based methods. An elaborate discussion of the pros and cons of each approach is presented, along with some challenging issues for future research. A comparative study suggests that the compressive covariance sensing-based approach offers a more competitive solution for reliable real-time WBSS.
3D point cloud classification has many safety-critical applications such as autonomous driving and robotic grasping. However, several studies showed that it is vulnerable to adversarial attacks. In particular, an attacker can make a classifier predic t an incorrect label for a 3D point cloud via carefully modifying, adding, and/or deleting a small number of its points. Randomized smoothing is state-of-the-art technique to build certifiably robust 2D image classifiers. However, when applied to 3D point cloud classification, randomized smoothing can only certify robustness against adversarially modified points. In this work, we propose PointGuard, the first defense that has provable robustness guarantees against adversarially modified, added, and/or deleted points. Specifically, given a 3D point cloud and an arbitrary point cloud classifier, our PointGuard first creates multiple subsampled point clouds, each of which contains a random subset of the points in the original point cloud; then our PointGuard predicts the label of the original point cloud as the majority vote among the labels of the subsampled point clouds predicted by the point cloud classifier. Our first major theoretical contribution is that we show PointGuard provably predicts the same label for a 3D point cloud when the number of adversarially modified, added, and/or deleted points is bounded. Our second major theoretical contribution is that we prove the tightness of our derived bound when no assumptions on the point cloud classifier are made. Moreover, we design an efficient algorithm to compute our certified robustness guarantees. We also empirically evaluate PointGuard on ModelNet40 and ScanNet benchmark datasets.
Molecular science is governed by the dynamics of electrons, atomic nuclei, and their interaction with electromagnetic fields. A reliable physicochemical understanding of these processes is crucial for the design and synthesis of chemicals and materia ls of economic value. Although some problems in this field are adequately addressed by classical mechanics, many require an explicit quantum mechanical description. Such quantum problems represented by exponentially large wave function should naturally benefit from quantum computation on a number of logical qubits that scales only linearly with system size. In this perspective, we focus on the potential of quantum computing for solving relevant problems in the molecular sciences -- molecular physics, chemistry, biochemistry, and materials science.
Although routinely utilized in literature, orthogonal waveforms may lose orthogonality in distributed multi-input multi-output (MIMO) radar with spatially separated transmit (TX) and receive (RX) antennas, as the waveforms may experience distinct del ays and Doppler frequency offsets unique to different TX-RX propagation paths. In such cases, the output of each waveform-specific matched filter (MF), employed to unravel the waveforms at the RXs, contains both an auto term and multiple cross terms, i.e., the filtered response of the desired and, respectively, undesired waveforms. We consider the impact of non-orthogonal waveforms and their cross terms on target detection with or without timing, frequency, and phase errors. To this end, we present a general signal model for distributed MIMO radar, examine target detection using existing coherent/non-coherent detectors and two new detectors, including a hybrid detector that requires phase coherence locally but not across distributed antennas, and provide a statistical analysis leading to closed-form expressions of false alarm and detection probabilities for all detectors. Our results show that cross terms can behave like foes or allies, respectively, if they and the auto term add destructively or constructively, depending on the propagation delay, frequency, and phase offsets. Regarding sync errors, we show that phase errors affect only coherent detectors, frequency errors degrade all but the non-coherent detector, while all are impacted by timing errors, which result in a loss in the signal-to-noise ratio (SNR).
In this paper, power allocation is examined for the coexistence of a radar and a communication system that employ multicarrier waveforms. We propose two designs for the considered spectrum sharing problem by maximizing the output signal-to-interferen ce-plus-noise ratio (SINR) at the radar receiver while maintaining certain communication throughput and power constraints. The first is a joint design where the subchannel powers of both the radar and communication systems are jointly optimized. Since the resulting problem is highly nonconvex, we introduce a reformulation by combining the power variables of both systems into a single stacked variable, which allows us to bypass a conventional computationally intensive alternating optimization procedure. The resulting problem is then solved via a quadratic transform method along with a sequential convex programming (SCP) technique. The second is a unilateral design which optimizes the radar transmission power with fixed communication power. The unilateral design is suitable for cases where the communication system pre-exists while the radar occasionally joins the channel as a secondary user. The problem is solved by a Taylor expansion based iterative SCP procedure. Numerical results are presented to demonstrate the effectiveness of the proposed joint and unilateral designs in comparison with a subcarrier allocation based method.
This paper explores the utility of the quantum phase estimation (QPE) in calculating high-energy excited states characterized by promotions of electrons occupying inner energy shells. These states have been intensively studied over the last few decad es especially in supporting the experimental effort at light sources. Results obtained with the QPE are compared with various high-accuracy many-body techniques developed to describe core-level states. The feasibility of the quantum phase estimator in identifying classes of challenging shake-up states characterized by the presence of higher-order excitation effects is also discussed.
Nasopharyngeal (NP) swab sampling is an effective approach for the diagnosis of coronavirus disease 2019 (COVID-19). Medical staffs carrying out the task of collecting NP specimens are in close contact with the suspected patient, thereby posing a hig h risk of cross-infection. We propose a low-cost miniature robot that can be easily assembled and remotely controlled. The system includes an active end-effector, a passive positioning arm, and a detachable swab gripper with integrated force sensing capability. The cost of the materials for building this robot is 55 USD and the total weight of the functional part is 0.23kg. The design of the force sensing swab gripper was justified using Finite Element (FE) modeling and the performances of the robot were validated with a simulation phantom and three pig noses. FE analysis indicated a 0.5mm magnitude displacement of the grippers sensing beam, which meets the ideal detecting range of the optoelectronic sensor. Studies on both the phantom and the pig nose demonstrated the successful operation of the robot during the collection task. The average forces were found to be 0.35N and 0.85N, respectively. It is concluded that the proposed robot is promising and could be further developed to be used in vivo.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا