ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin- and charge- stripe order has been extensively studied in the superconducting cuprates, among which underdoped ${mathrm{La}}_{2-x}{mathrm{Sr}}_{x}{mathrm{CuO}}_{4}$ (LSCO) is an archetype which has static spin density wave (SDW) order at low tem peratures. An intriguing, but not completely understood, phenomenon in LSCO is that the stripes are not perfectly aligned with the high-symmetry Cu-Cu directions, but are tilted. Using high-resolution neutron scattering, we find that the model material LSCO with $x=0.12$ has two coexisting phases at low temperatures, one with static spin stripes and one with fluctuating spin stripes, where both phases have the same tilt angle. For the static SDW, we accurately determined the spin direction as well as the interlayer correlations. Moreover, we performed numerical calculations using the doped Hubbard model to explain the origin of the tilting of the stripes. The tilting is quantitatively accounted for with a next-nearest neighbor hopping $t^{prime}$ that is anisotropic, consistent with the slight orthorhombicity of the sample. Our results highlight the success of the doped Hubbard model to describe specific details of the ground state of a real material, as well as the importance of $t^prime$ in the Hamiltonian. These results further reveal how the stripes and superconductivity are sensitively intertwined at the level of model calculations as well as in experimental observations.
Unidirectional (stripe) charge-density-wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high temperature (HT) superconductors, where it generally competes with superconductivity (SC). None-the-less, on t heoretical grounds it has been conjectured that stripe order (or other forms of optimal inhomogeneities) may play an essential positive role in the mechanism of HTSC. Here we report density matrix renormalization group studies of the Hubbard model on long 4 and 6 leg cylinders where the hopping matrix elements transverse to the long direction are periodically modulated - mimicing the effect of putative period-2 stripe order. We find even modest amplitude modulations can enhance the long-distance SC correlations by many orders of magnitude, and drive the system into a phase with a substantial spin gap and SC quasi-long-range-order with a Luttinger exponent, $K_{sc} sim 1$.
We have performed density-matrix renormalization group studies of a square lattice $t$-$J$ model with small hole doping, $deltall 1$, on long 4 and 6 leg cylinders. We include frustration in the form of a second-neighbor exchange coupling, $J_2 = J_1 /2$, such that the undoped ($delta=0$) parent state is a quantum spin liquid. In contrast to the relatively short range superconducting (SC) correlations that have been observed in recent studies of the 6-leg cylinder in the absence of frustration, we find power law SC correlations with a Luttinger exponent, $K_{sc} approx 1$, consistent with a strongly diverging SC susceptibility, $chi sim T^{-(2-K_{sc})}$ as the temperature $Tto 0$. The spin-spin correlations - as in the undoped state - fall exponentially suggesting that the SC pairing correlations evolve smoothly from the insulating parent state.
We study the quantum phase diagram of spinful fermions on kagome lattice with half-filled lowest flat bands. To understand the competition between magnetism, flat band frustration, and repulsive interactions, we adopt an extended $t$-$J$ model, where the hopping energy $t$, antiferromagnetic Heisenberg interaction $J$, and short-range neighboring Hubbard interaction $V$ are considered. In the weak $J$ regime, we identify a fully spin-polarized phase, which can further support the spontaneous Chern insulating phase driven by the short-range repulsive interaction. This phase still emerges with in-plane ferromagnetism, whereas the non-interacting Chern insulator disappears constrained by symmetry. As $J$ gradually increases, the ferromagnetism is suppressed and the system first becomes partially-polarized with large magnetization and then enters a non-polarized phase with the ground state exhibiting vanishing magnetization. We identify this non-polarized phase as an insulator with a nematic charge density wave. In the end, we discuss the potential experimental observations of our theoretical findings.
It has long been proposed that doping a chiral spin liquid (CSL) or fractional quantum Hall state can give rise to topological superconductivity. Despite of intensive effort, definitive evidences still remain lacking. We address this problem by study ing the $t$-$J$ model supplemented by time-reversal symmetry breaking chiral interaction $J_chi$ on the triangular lattice using density-matrix renormalization group with a finite concentration $delta$ of doped holes. It has been established that the undoped, i.e., $delta$=0, system has a CSL ground state in the parameter region $0.32le J_chi/J le 0.56$. Upon light doping, we find that the ground state of the system is consistent with a Luther-Emery liquid with power-law superconducting and charge-density-wave correlations but short-range spin-spin correlations. In particular, the superconducting correlations, whose pairing symmetry is consistent with $dpm id$-wave, are dominant at all hole doping concentrations. Our results provide direct evidences that doping the CSL on the triangular lattice can naturally give rise to topological superconductivity.
116 - Hong-Chen Jiang 2019
Broad interest in quantum spin liquid (QSL) phases was triggered by the notion that they can be viewed as insulating phases with preexisting electron-pairs, such that upon light doping they might automatically yield superconductivity. Yet despite int ense efforts, definitive evidence is lacking. We address the problem of a lightly doped QSL through a large-scale density-matrix renormalization group study of the $t$-$J$ model on the triangular lattice with a small but non-zero concentration of doped holes. The ground state is consistent with a Luther-Emery liquid with power-law superconducting and charge-density-wave correlations associated with partially-filled charge stripes. In particular, the superconducting correlations are dominant on both four-leg and six-leg cylinders at all hole doping concentrations. Our results provide direct evidences that doping a QSL can naturally lead to robust superconductivity.
Recent experimental evidence for a field-induced quantum spin liquid (QSL) in $alpha$-RuCl$_3$ calls for an understanding for the ground state of honeycomb Kitaev model under a magnetic field. In this work we address the nature of an enigmatic gaples s paramagnetic phase in the antiferromagnetic Kitave model, under an intermediate magnetic field perpendicular to the plane. Combining theoretical and numerical efforts, we identify this gapless phase as a $U(1)$ QSL with spinon Fermi surfaces. We also reveal the nature of continuous quantum phase transitions involving this $U(1)$ QSL, and obtain a phase diagram of the Kitaev model as a function of bond anisotropy and perpendicular magnetic field.
A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emerg ence of stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large portion of the cuprate phase diagram.
We report a combined analytical and density matrix renormalized group study of the antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic field. The numerically determined phase diagram of this model, which features two ordered Ising phases and a critical Luttinger liquid one with fully broken spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [Phys. Rev. B 81, 144419 (2010)]. We also confirm the prevalence of the N z Neel Ising order in the regime of comparable DM and magnetic field magnitudes.
In this paper, we have systematically studied the single hole problem in two-leg Hubbard and $t$-$J$ ladders by large-scale density-matrix renormalization group calculations. We found that the doped hole in both models behaves similarly with each oth er while the three-site correlated hopping term is not important in determining the ground state properties. For more insights, we have also calculated the elementary excitations, i.e., the energy gaps to the excited states of the system. In the strong rung limit, we found that the doped hole behaves as a Bloch quasiparticle in both systems where the spin and charge of the doped hole are tightly bound together. In the isotropic limit, while the hole still behaves like a quasiparticle in the long-wavelength limit, its spin and charge components are only loosely bound together with a nontrivial mutual statistics inside the quasiparticle. Our results show that this mutual statistics can lead to an important residual effect which dramatically changes the local structure of the ground state wavefunction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا