ترغب بنشر مسار تعليمي؟ اضغط هنا

The hybrid method combining particle-in-cell and magnetohydrodynamics can be used to study the interaction between energetic particles and global plasma modes. In this paper we introduce the M3D-C1-K code, which is developed based on the M3D-C1 finit e element code solving the magnetohydrodynamics equations, with a newly developed kinetic module simulating energetic particles. The particle pushing is done using a new algorithm by applying the Boris pusher to the classical Pauli particles to simulate the slow-manifold of particle orbits, with long-term accuracy and fidelity. The particle pushing can be accelerated using GPUs with a significant speedup. The moments of the particles are calculated using the $delta f$ method, and are coupled into the magnetohydrodynamics simulation through pressure or current coupling schemes. Several linear simulations of magnetohydrodynamics modes driven by energetic particles have been conducted using M3D-C1-K, including fishbone, toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes. Good agreement with previous results from other eigenvalue, kinetic and hybrid codes has been achieved.
In strong electromagnetic fields, unique plasma phenomena and applications emerge, whose description requires recently developed theories and simulations [Y. Shi, Ph.D. thesis, Princeton University (2018)]. In the classical regime, to quantify effect s of strong magnetic fields on three-wave interactions, a convenient formula is derived by solving the fluid model to the second order in general geometry. As an application, magnetic resonances are exploited to mediate laser pulse compression, using which higher intensity pulses can be produced in wider frequency ranges, as confirmed by particle-in-cell simulations. In even stronger fields, relativistic-quantum effects become important, and a plasma model based on scalar quantum electrodynamics (QED) is developed, which unveils observable corrections to Faraday rotation and cyclotron absorption in strongly magnetized plasmas. Beyond the perturbative regime, lattice QED is extended as a numerical tool for plasma physics, using which the transition from wakefield acceleration to electron-positron pair production is captured when laser intensity exceeds the Schwinger threshold.
67 - Yichen Fu , Hong Qin 2020
Plasmas have been recently studied as topological materials. However, a comprehensive picture of topological phases and topological phase transitions in cold magnetized plasmas is still missing. Here we systematically map out all the topological phas es and establish the bulk-edge correspondence in cold magnetized plasmas. We find that for the linear eigenmodes, there are 10 topological phases in the parameter space of density $n$, magnetic field $B$, and parallel wavenumber $k_{z}$, separated by the surfaces of Langmuir wave-L wave resonance, Langmuir wave-cyclotron wave resonance, and zero magnetic field. For fixed $B$ and $k_{z}$, only the phase transition at the Langmuir wave-cyclotron wave resonance corresponds to edge modes. A sufficient and necessary condition for the existence of this type of edge modes is given and verified by numerical solutions. We demonstrate that edge modes exist not only on a plasma-vacuum interface but also on more general plasma-plasma interfaces. This finding broadens the possible applications of these exotic excitations in space and laboratory plasmas.
263 - Yichen Fu , Xin Zhang , Hong Qin 2020
We develop an Explicitly Solvable Energy-Conserving (ESEC) algorithm for the Stochastic Differential Equation (SDE) describing the pitch-angle scattering process in magnetized plasmas. The Cayley transform is used to calculate both the deterministic gyromotion and stochastic scattering, affording the algorithm to be explicitly solvable and exactly energy conserving. An unusual property of the SDE for pitch-angle scattering is that its coefficients diverge at the zero velocity and do not satisfy the global Lipschitz condition. Consequently, when standard numerical methods, such as the Euler-Maruyama (EM), are applied, numerical convergence is difficult to establish. For the proposed ESEC algorithm, its energy-preserving property enables us to overcome this obstacle. We rigorously prove that the ESEC algorithm is order 1/2 strongly convergent. This result is confirmed by detailed numerical studies. For the case of pitch-angle scattering in a magnetized plasma with a constant magnetic field, the numerical solution is benchmarked against the analytical solution, and excellent agreements are found.
A method of Parity-Time (PT)-symmetry analysis is introduced to study the high dimensional, complicated parameter space of drift wave instabilities. We show that spontaneous PT-symmetry breaking leads to the Ion Temperature Gradient (ITG) instability of drift waves, and the collisional instability is the result of explicit PT-symmetry breaking. A new unstable drift wave induced by finite collisionality is identified. It is also found that gradients of ion temperature and density can destabilize the ion cyclotron waves when PT symmetry is explicitly broken by a finite collisionality.
A new formalism for lattice gauge theory is developed that preserves Poincare symmetry in a discrete universe. We define the $mathbb{1}$-loop, a generalization of the Wilson loop that reformulates classical differential equations of motion as identit y-valued multiplicative loops of Lie group elements of the form ${[g_1cdots g_n]=mathbb{1}}$. A lattice Poincare gauge theory of gravity is thus derived that employs a novel matter field construction and recovers Einsteins vacuum equations in the appropriate limit.
Dark solitons are common topological excitations in a wide array of nonlinear waves. The dark soliton excitation energy, crucial for exploring dark soliton dynamics, is necessarily calculated in a renormalized form due to its existence on a finite ba ckground. Despite its tremendous importance and success, the renormalized energy form was firstly only suggested with no detailed derivation, and was then derived in the grand canonical ensemble. In this work, we revisit this fundamental problem and provide an alternative and intuitive derivation of the energy form from the fundamental field energy by utilizing a limiting procedure that conserves number of particles. Our derivation yields the same result, putting therefore the dark soliton energy form on a solid basis.
Solitons in multi-component Bose-Einstein condensates have been paid much attention, due to the stability and wide applications of them. The exact soliton solutions are usually obtained for integrable models. In this paper, we present four families o f exact spin soliton solutions for non-integrable cases in spin-1 Bose-Einstein Condensates. The whole particle density is uniform for the spin solitons, which is in sharp contrast to the previously reported solitons of integrable models. The spectrum stability analysis and numerical simulation indicate the spin solitons can exist stably. The spin density redistribution happens during the collision process, which depends on the relative phase and relative velocity between spin solitons. The non-integrable properties of the systems can bring spin solitons experience weak amplitude and location oscillations after collision. These stable spin soliton excitations could be used to study the negative inertial mass of solitons, the dynamics of soliton-impurity systems, and the spin dynamics in Bose-Einstein condensates.
In recent years, several gauge-symmetric particle-in-cell (PIC) methods have been developed whose simulations of particles and electromagnetic fields exactly conserve charge. While it is rightly observed that these methods gauge symmetry gives rise t o their charge conservation, this causal relationship has generally been asserted via ad hoc derivations of the associated conservation laws. In this work, we develop a comprehensive theoretical grounding for charge conservation in gauge-symmetric Lagrangian and Hamiltonian PIC algorithms. For Lagrangian variational PIC methods, we apply Noethers second theorem to demonstrate that gauge symmetry gives rise to a local charge conservation law as an off-shell identity. For Hamiltonian splitting methods, we show that the momentum map establishes their charge conservation laws. We define a new class of algorithms -- gauge-compatible splitting methods -- that exactly preserve the momentum map associated with a Hamiltonian systems gauge symmetry -- even after time discretization. This class of algorithms affords splitting schemes a decided advantage over alternative Hamiltonian integrators. We apply this general technique to design a novel, explicit, symplectic, gauge-compatible splitting PIC method, whose momentum map yields an exact local charge conservation law. Our study clarifies the appropriate initial conditions for such schemes and examines their symplectic reduction.
Driven by the emerging use cases in massive access future networks, there is a need for technological advancements and evolutions for wireless communications beyond the fifth-generation (5G) networks. In particular, we envisage the upcoming sixth-gen eration (6G) networks to consist of numerous devices demanding extremely high-performance interconnections even under strenuous scenarios such as diverse mobility, extreme density, and dynamic environment. To cater for such a demand, investigation on flexible and sustainable radio access network (RAN) techniques capable of supporting highly diverse requirements and massive connectivity is of utmost importance. To this end, this paper first outlines the key driving applications for 6G, including smart city and factory, which trigger the transformation of existing RAN techniques. We then examine and provide in-depth discussions on several critical performance requirements (i.e., the level of flexibility, the support for massive interconnectivity, and energy efficiency), issues, enabling technologies, and challenges in designing 6G massive RANs. We conclude the article by providing several artificial-intelligence-based approaches to overcome future challenges.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا