ترغب بنشر مسار تعليمي؟ اضغط هنا

Safety is of great importance in multi-robot navigation problems. In this paper, we propose a control barrier function (CBF) based optimizer that ensures robot safety with both high probability and flexibility, using only sensor measurement. The opti mizer takes action commands from the policy network as initial values and then provides refinement to drive the potentially dangerous ones back into safe regions. With the help of a deep transition model that predicts the evolution of surrounding dynamics and the consequences of different actions, the CBF module can guide the optimization in a reasonable time horizon. We also present a novel joint training framework that improves the cooperation between the Reinforcement Learning (RL) based policy and the CBF-based optimizer both in training and inference procedures by utilizing reward feedback from the CBF module. We observe that the policy using our method can achieve a higher success rate while maintaining the safety of multiple robots in significantly fewer episodes compared with other methods. Experiments are conducted in multiple scenarios both in simulation and the real world, the results demonstrate the effectiveness of our method in maintaining the safety of multi-robot navigation. Code is available at url{https://github.com/YuxiangCui/MARL-OCBF
We present a novel facial expression recognition network, called Distract your Attention Network (DAN). Our method is based on two key observations. Firstly, multiple classes share inherently similar underlying facial appearance, and their difference s could be subtle. Secondly, facial expressions exhibit themselves through multiple facial regions simultaneously, and the recognition requires a holistic approach by encoding high-order interactions among local features. To address these issues, we propose our DAN with three key components: Feature Clustering Network (FCN), Multi-head cross Attention Network (MAN), and Attention Fusion Network (AFN). The FCN extracts robust features by adopting a large-margin learning objective to maximize class separability. In addition, the MAN instantiates a number of attention heads to simultaneously attend to multiple facial areas and build attention maps on these regions. Further, the AFN distracts these attentions to multiple locations before fusing the attention maps to a comprehensive one. Extensive experiments on three public datasets (including AffectNet, RAF-DB, and SFEW 2.0) verified that the proposed method consistently achieves state-of-the-art facial expression recognition performance. Code will be made available at https://github.com/yaoing/DAN.
In this paper, we study the identity of textual events from different documents. While the complex nature of event identity is previously studied (Hovy et al., 2013), the case of events across documents is unclear. Prior work on cross-document event coreference has two main drawbacks. First, they restrict the annotations to a limited set of event types. Second, they insufficiently tackle the concept of event identity. Such annotation setup reduces the pool of event mentions and prevents one from considering the possibility of quasi-identity relations. We propose a dense annotation approach for cross-document event coreference, comprising a rich source of event mentions and a dense annotation effort between related document pairs. To this end, we design a new annotation workflow with careful quality control and an easy-to-use annotation interface. In addition to the links, we further collect overlapping event contexts, including time, location, and participants, to shed some light on the relation between identity decisions and context. We present an open-access dataset for cross-document event coreference, CDEC-WN, collected from English Wikinews and open-source our annotation toolkit to encourage further research on cross-document tasks.
Natural language generation (NLG) spans a broad range of tasks, each of which serves for specific objectives and desires different properties of generated text. The complexity makes automatic evaluation of NLG particularly challenging. Previous work has typically focused on a single task and developed individual evaluation metrics based on specific intuitions. In this paper, we propose a unifying perspective based on the nature of information change in NLG tasks, including compression (e.g., summarization), transduction (e.g., text rewriting), and creation (e.g., dialog). Information alignment between input, context, and output text plays a common central role in characterizing the generation. With automatic alignment prediction models, we develop a family of interpretable metrics that are suitable for evaluating key aspects of different NLG tasks, often without need of gold reference data. Experiments show the uniformly designed metrics achieve stronger or comparable correlations with human judgement compared to state-of-the-art metrics in each of diverse tasks, including text summarization, style transfer, and knowledge-grounded dialog.
The recent progress of CNN has dramatically improved face alignment performance. However, few works have paid attention to the error-bias with respect to error distribution of facial landmarks. In this paper, we investigate the error-bias issue in fa ce alignment, where the distributions of landmark errors tend to spread along the tangent line to landmark curves. This error-bias is not trivial since it is closely connected to the ambiguous landmark labeling task. Inspired by this observation, we seek a way to leverage the error-bias property for better convergence of CNN model. To this end, we propose anisotropic direction loss (ADL) and anisotropic attention module (AAM) for coordinate and heatmap regression, respectively. ADL imposes strong binding force in normal direction for each landmark point on facial boundaries. On the other hand, AAM is an attention module which can get anisotropic attention mask focusing on the region of point and its local edge connected by adjacent points, it has a stronger response in tangent than in normal, which means relaxed constraints in the tangent. These two methods work in a complementary manner to learn both facial structures and texture details. Finally, we integrate them into an optimized end-to-end training pipeline named ADNet. Our ADNet achieves state-of-the-art results on 300W, WFLW and COFW datasets, which demonstrates the effectiveness and robustness.
This paper proposes a belief propagation (BP)-based algorithm for sequential detection and estimation of multipath components (MPCs) parameters based on radio signals. Under dynamic channel conditions with moving transmitter and/or receiver, the numb er of MPCs reflected from visible geometric features, the MPC dispersion parameters (delay, angle, Doppler frequency, etc), and the number of false alarm contributions are unknown and time-varying. We develop a Bayesian model for sequential detection and estimation of MPC dispersion parameters, and represent it by a factor graph enabling the use of BP for efficient computation of the marginal posterior distributions. At each time instance, a snapshot-based channel estimator provides parameter estimates of a set of MPCs which are used as noisy measurements by the proposed BP-based algorithm. It performs joint probabilistic data association, estimation of the time-varying MPC parameters, and the mean number of false alarm measurements by means of the sum-product algorithm rules. The results using synthetic measurements show that the proposed algorithm is able to cope with a high number of false alarm measurements originating from the snapshot-based channel estimator and to sequentially detect and estimate MPCs parameters with very low signal-to-noise ratio (SNR). The performance of the proposed algorithm compares well to existing algorithms for high SNR MPCs, but significantly it outperforms them for medium or low SNR MPCs. In particular, we show that our algorithm outperforms the Kalman enhanced super resolution tracking (KEST) algorithm, a state-of-the-art sequential channel parameters estimation method. Furthermore, results with real radio measurements demonstrate the excellent performance of the algorithm in realistic and challenging scenarios.
Ground-state cooling of mechanical resonators is an important task in quantum optomechanics, because it is a necessary prerequisite for creation, manipulation, and application of macroscopic mechanical coherence. Here, we propose a transient-state sc heme to accelerate ground-state cooling of a mechanical resonator in a three-mode loop-coupled optomechanical system via shortcuts to adiabaticity (STA). We consider four kinds of coupling protocols and calculate the evolution of the mean phonon number of the mechanical resonator in both the adiabatic and STA cases. We verify that the ground-state cooling of the mechanical resonator can be achieved with the STA method in a much shorter period. The STA method can also be generalized to accelerate other adiabatic processes in cavity optomechanics, and hence this work will open up a new realm of fast optomechanical manipulations.
Recently, two approaches, fine-tuning large pre-trained language models and variational training, have attracted significant interests, separately, for semi-supervised end-to-end task-oriented dialog (TOD) systems. In this paper, we propose Variation al Latent-State GPT model (VLS-GPT), which is the first to combine the strengths of the two approaches. Among many options of models, we propose the generative model and the inference model for variational learning of the end-to-end TOD system, both as auto-regressive language models based on GPT-2, which can be further trained over a mix of labeled and unlabeled dialog data in a semi-supervised manner. We develop the strategy of sampling-then-forward-computation, which successfully overcomes the memory explosion issue of using GPT in variational learning and speeds up training. Semi-supervised TOD experiments are conducted on two benchmark multi-domain datasets of different languages - MultiWOZ2.1 and CrossWOZ. VLS-GPT is shown to significantly outperform both supervised-only and semi-supervised baselines.
Using rough path theory, we provide a pathwise foundation for stochastic It^o integration, which covers most commonly applied trading strategies and mathematical models of financial markets, including those under Knightian uncertainty. To this end, w e introduce the so-called Property (RIE) for c`adl`ag paths, which is shown to imply the existence of a c`adl`ag rough path and of quadratic variation in the sense of Follmer. We prove that the corresponding rough integrals exist as limits of left-point Riemann sums along a suitable sequence of partitions. This allows one to treat integrands of non-gradient type, and gives access to the powerful stability estimates of rough path theory. Additionally, we verify that (path-dependent) functionally generated trading strategies and Covers universal portfolio are admissible integrands, and that Property (RIE) is satisfied by both (Young) semimartingales and typical price paths.
Stochastic processes are random variables with values in some space of paths. However, reducing a stochastic process to a path-valued random variable ignores its filtration, i.e. the flow of information carried by the process through time. By conditi oning the process on its filtration, we introduce a family of higher order kernel mean embeddings (KMEs) that generalizes the notion of KME and captures additional information related to the filtration. We derive empirical estimators for the associated higher order maximum mean discrepancies (MMDs) and prove consistency. We then construct a filtration-sensitive kernel two-sample test able to pick up information that gets missed by the standard MMD test. In addition, leveraging our higher order MMDs we construct a family of universal kernels on stochastic processes that allows to solve real-world calibration and optimal stopping problems in quantitative finance (such as the pricing of American options) via classical kernel-based regression methods. Finally, adapting existing tests for conditional independence to the case of stochastic processes, we design a causal-discovery algorithm to recover the causal graph of structural dependencies among interacting bodies solely from observations of their multidimensional trajectories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا