ترغب بنشر مسار تعليمي؟ اضغط هنا

We report 73Ge-NMR and NQR results for ferromagnetic (FM) superconductor URhGe. The magnitude and direction of the internal field, H_int, and parameters of the electric field gradient at the Ge site were determined experimentally. Using powdered poly crystalline samples oriented by different methods, the field dependences of NMR shift and nuclear spin relaxation rates for H_0 // c (easy axis) and H_0 // b were obtained. From the NMR shifts for H_0 // b, we confirmed a gradual suppression of the Curie temperature and observed a phase separation near the spin reorientation. The observation of the phase separation gives microscopic evidence that the spin reorientation under H_0 // b is of first order at low temperatures. The nuclear spin-lattice relaxation rate 1/T_1 indicates that the magnetic fluctuations are suppressed for H_0 // c, whereas the fluctuations remain strongly for H_0 // b. The enhancements of both 1/T_1T and the nuclear spin-spin relaxation rate 1/T_2 for H_0 // b toward the spin reorientation field suggest that the field-induced superconductivity in URhGe emerges under the magnetic fluctuations along the b axis and the c axis.
We have performed $^{31}$P-NMR measurements on single-crystalline CeRuPO under pressure in order to understand the variation in magnetic character against pressure. The NMR spectra for $H perp c$ and $H parallel c$ at 2.15GPa split below the ordered temperature, which is a microscopic evidence of the change in the magnetic ground state from the ferromagnetic (FM) state at ambient pressure to the antiferromagnetic (AFM) state under pressure. The analysis of NMR spectra suggests that the magnetic structure in AFM state is the stripe-type AFM state with the AFM moment $m_{rm AFM} perp c$-axis and changes by magnetic field perpendicular to $c$-axis. In addition, the dimensionality of magnetic correlations in the spin and the $k$ space is estimated. We reveal that three-dimensional magnetic correlations in CeRuPO are robust against pressure, which is quite different from the suppression of the magnetic correlations along the $c$-axis by Fe substitution in Ce(Ru$_{1-x}$Fe$_{x}$)PO.
Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P_c between the helimagn etic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T_1 reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T_1 in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor.
We present NMR measurements of the layered nitride superconductor Li_xZrNCl. The nuclear spin-lattice relaxation rate, 1/T_1, shows that the coherence peak is strongly suppressed in Li_xZrNCl in contrast to conventional BCS superconductors. In the li ghtly-doped region close to the insulating state, the system shows a gap-like behavior, i.e., pseudogap, that is characterized by a reduction in the magnitude of the Knight shift and 1/T_1T. A higher superconducting (SC) transition temperature, T_c, is achieved by coexisting with the pseudogap state. These unusual behaviors, which deviate from the ordinary BCS framework, are the key ingredients to understanding the SC mechanism of Li_xZrNCl.
We report resistivity measurements of the helimagnet CrAs under pressures. The helimagnetic transition with T_N ~ 265 K at ambient pressure is completely suppressed above a critical pressure of P_c ~ 0.7 GPa, and superconductivity is observed at ~2.2 K for zero resistance, which exists in a wide pressure range extending beyond 3 GPa. Both the upper critical field H_{c2} and the coefficient A in the resistivity increase toward P_c, suggesting that the superconductivity of CrAs is mediated by electronic correlations enhanced in the vicinity of the helimagnetic phase.
The pressure dependences of resistivity and ac susceptibility have been measured in the mineral calaverite AuTe$_2$. Resistivity clearly shows a first-order phase transition into a high-pressure phase, consistent with the results of a previous struct ural analysis. We found zero resistivity and a diamagnetic shielding signal at low temperatures in the high-pressure phase, which clearly indicates the appearance of superconductivity. Our experimental results suggest that bulk superconductivity appears only in the high-pressure phase. For AuTe$_2$, the highest superconducting transition temperature under pressure is $T_{rm c}$ = 2.3 K at 2.34 GPa; it was $T_{rm c}$ = 4.0 K for Pt-doped (Au$_{0.65}$Pt$_{0.35}$)Te$_2$. The difference in $T_{rm c}$ between the two systems is discussed on the basis of the results obtained using the band calculations and McMillans formula.
We report the electrical resistivity measurements under pressure for the recently discovered BiS2-based layered superconductors Bi4O4S3 and La(O,F)BiS2. In Bi4O4S3, the transition temperature Tc decreases monotonically without a distinct change in th e metallic behavior in the normal state. In La(O,F)BiS2, on the other hand, Tc initially increases with increasing pressure and then decreases above ? 1 GPa. The semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear. The strong suppression of the semiconducting behavior without doping in La(O,F)BiS2 suggests that the Fermi surface is located in the vicinity of some instability. In the present study, we elucidate that the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors.
We report $^{77}$Se-nuclear magnetic resonance (NMR) results down to sufficiently low temperatures under magnetic fields parallel to both the $ab$-plane and the c-axis in a paramagnetic/superconducting (PM/SC) phase of K$_x$Fe$_{2-y}$Se$_2$. The obse rvation of anisotropy in the orbital part of the Knight shift results in the anisotropy of its spin part increasing on approaching the transition temperature. The anisotropy of the Korringa relation suggests the presence of the weak spin fluctuations with a finite wave vector $bm{q}$, which induce the magnetic fluctuations along the ab-plane at the Se site. Such fluctuations do not correspond to the stripe $(pi,0)$ correlation of the Fe moment observed in many Fe-based superconductors, and are not contradictory to weak $(pi,pi)$ correlations. The nuclear spin-lattice relaxation rate $1/T_1$ shows a field-independent $T_1T sim const.$ behavior at low temperatures for $H parallel ab$, which is attributed to the nonzero density of states at the Fermi level and can be explained by the sign-changing order parameter even for nodeless gaps. The temperature dependence of $1/T_1$ is reproduced well by nodeless models with two isotropic gaps or a single anisotropic gap. The obtained gap magnitude in the isotropic two-gap model is comparable to those obtained in the angle-resolved photoemission spectroscopy experiments.
Doping Kondo lattice system CeRu2Si2 with Rh-8% (Ce(Ru0.92Rh0.08)2Si2) leads to drastic consequences due to the mismatch of the lattice parameters between CeRu2Si2 and CeRh2Si2. A large variety of experiments clarifies the unusual properties of the g round state induced by the magnetic field from longitudinal antiferromagnetic (AF) mode at H = 0 to polarized paramagnetic phase in very high magnetic field. The separation between AF phase, paramagnetic phase and polarized paramagnetic phase varying with temperature, magnetic field and pressure is discussed on the basis of the experiments down to very low temperature. Similarities and differences between Rh and La substituted alloys are discussed with emphasis on the competition between transverse and longitudinal AF modes, and ferromagnetic fluctuations.
We report the pressure dependences of the superconducting transition temperature (T_c) in several perovskite-type Fe-based superconductors through the resistivity measurements up to ~4 GPa. In Ca_4(Mg,Ti)_3Fe_2As_2O_y with the highest T_c of 47 K in the present study, the T_c keeps almost constant up to ~1 GPa, and starts to decrease above it. From the comparison among several systems, we obtained a tendency that low T_c with the longer a-axis length at ambient pressure increases under pressure, but high T_c with the shorter a-axis length at ambient pressure hardly increases. We also report the ^75As-NMR results on Sr_2VFeAsO_3. NMR spectrum suggests that the magnetic ordering occurs at low temperatures accompanied by some inhomogeneity. In the superconducting state, we confirmed the anomaly by the occurrence of superconductivity in the nuclear spin lattice relaxation rate 1/T_1, but the spin fluctuations unrelated with the superconductivity are dominant. It is conjectured that the localized V-3d moments are magnetically ordered and their electrons do not contribute largely to the Fermi surface and the superconductivity in Sr_2VFeAsO_3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا