ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dynamics of the Nambu-Goto membranes with cohomogeneity one symmetry, i.e., the membranes whose trajectories are foliated by homogeneous surfaces. It is shown that the equation of motion reduces to a geodesic equation on a certain manifo ld, which is constructed from the original spacetime and Killing vector fields thereon. A general method is presented for classifying the symmetry of cohomogeneity one membranes in a given spacetime. The classification is completely carried out in Minkowski spacetime. We analyze one of the obtained classes in depth and derive an exact solution.
We consider the metric perturbations around a stationary rotating Nambu-Goto string in Minkowski spacetime. By solving the linearized Einstein equations, we study the effects of azimuthal frame-dragging around the rotation axis and linear frame-dragg ing along the rotation axis, the Newtonian logarithmic potential, and the angular deficit around the string as the potential mode. We also investigate gravitational waves propagating off the string and propagating along the string, and show that the stationary rotating string emits gravitational waves toward the directions specified by discrete angles from the rotation axis. Waveforms, polarizations, and amplitudes which depend on the direction are shown explicitly.
Stationary rotating strings can be viewed as geodesic motions in appropriate metrics on a two-dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime as an application. These rotating strings have infinite length with various wiggly shapes. Averaged value of the string energy, the angular momentum and the linear momentum along the string are discussed.
The equation of motion of an extended object in spacetime reduces to an ordinary differential equation in the presence of symmetry. By properly defining of the symmetry with notion of cohomogeneity, we discuss the method for classifying all these ext ended objects. We carry out the classification for the strings in the five-dimensional anti-de Sitter space by the effective use of the local isomorphism between $SO(4,2)$ and $SU(2,2)$. We present a general method for solving the trajectory of the Nambu-Goto string and apply to a case obtained by the classification, thereby find a new solution which has properties unique to odd-dimensional anti-de Sitter spaces. The geometry of the solution is analized and found to be a timelike helicoid-like surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا