ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher order corrections in perturbative quantum field theory are required for precise theoretical analysis to investigate new physics beyond the Standard Model. This indicates that we need to evaluate Feynman loop diagram with multi-loop integral wh ich may require multi-precision calculation. We developed a dedicated accelerator system for multi-precision calculation (GRAPE9-MPX). We present performance results of our system for the case of Feynman two-loop box and three-loop selfenergy diagrams with multi-precision.
We investigated the evolution of interacting disk galaxies using high-resolution $N$-body/SPH simulations, taking into account the multiphase nature of the interstellar medium (ISM). In our high-resolution simulations, a large-scale starburst occurre d naturally at the collision interface between two gas disks at the first encounter, resulting in the formation of star clusters. This is consistent with observations of interacting galaxies. The probability distribution function (PDF) of gas density showed clear change during the galaxy-galaxy encounter. The compression of gas at the collision interface between the gas disks first appears as an excess at $n_{rm H} sim 10{rm cm^{-3}}$ in the PDF, and then the excess moves to higher densities ($n_{rm H} gtrsim 100{rm cm^{-3}}$) in a few times $10^7$ years where starburst takes place. After the starburst, the PDF goes back to the quasi-steady state. These results give a simple picture of starburst phenomena in galaxy-galaxy encounters.
We performed 3-dimensional N-body/SPH simulations to study how mass resolution and other model parameters such as the star formation efficiency parameter, C* and the threshold density, nth affect structures of the galactic gaseous/stellar disk in a s tatic galactic potential. We employ 10^6 - 10^7 particles to resolve a cold and dense (T < 100 K & n_H > 100 cm^{-3}) phase. We found that structures of the ISM and the distribution of young stars are sensitive to the assumed nth. High-nth models with nth = 100 cm^{-3} yield clumpy multi-phase features in the ISM. Young stars are distributed in a thin disk of which half-mass scale height is 10 - 30 pc. In low-nth models with nth = 0.1 cm^{-3}, the stellar disk is found to be several times thicker, and the gas disk appears smoother than the high-nth models. A high-resolution simulation with high-nth is necessary to reproduce the complex structure of the gas disk. The global properties of the model galaxies in low-nth models, such as star formation histories, are similar to those in the high-nth models when we tune the value of C* so that they reproduce the observed relation between surface gas density and surface star formation rate density. We however emphasize that high-nth models automatically reproduce the relation, regardless of the values of C*. The ISM structure, phase distribution, and distributions of young star forming region are quite similar between two runs with values of C* which differ by a factor of 15. We also found that the timescale of the flow from n_H ~1 cm^{-3} to n_H > 100 cm^{-3} is about 5 times as long as the local dynamical time and is independent of the value of C*. The use of a high-nth criterion for star formation in high-resolution simulations makes numerical models fairy insensitive to the modelling of star formation. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا