ترغب بنشر مسار تعليمي؟ اضغط هنا

Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to und erstand the physical contribution of the actiomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstituted a model system with a cell-sized deformable interface that exhibits anomalous curvature dependent wrinkling caused by actomyosin cortex underneath the spherical closed interface. Through the shape analysis of the wrinkling deformation, we found that the dominant contributor on the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex by increasing the droplet curvature radius of the order of the cell-size, i.e., tens of micrometer. The observed curvature dependence was explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight on the deformation of a curved membrane induced by the actomyosin cortex.
Observations of the polar region of the Sun are critically important for understanding the solar dynamo and the acceleration of solar wind. We carried out precise magnetic observations on both the North polar region and the quiet Sun at the East limb with the Spectro-Polarimeter of the Solar Optical Telescope aboard Hinode to characterize the polar region with respect to the quiet Sun. The average area and the total magnetic flux of the kG magnetic concentrations in the polar region appear to be larger than those of the quiet Sun. The magnetic field vectors classified as vertical in the quiet Sun have symmetric histograms around zero in the strengths, showing balanced positive and negative flux, while the histogram in the North polar region is clearly asymmetric, showing a predominance of the negative polarity. The total magnetic flux of the polar region is larger than that of the quiet Sun. In contrast, the histogram of the horizontal magnetic fields is exactly the same between the polar region and the quiet Sun. This is consistent with the idea that a local dynamo process is responsible for the horizontal magnetic fields. A high-resolution potential field extrapolation shows that the majority of magnetic field lines from the kG-patches in the polar region are open with a fanning-out structure very low in the atmosphere, while in the quiet Sun, almost all the field lines are closed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا