ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, whic h is similar to Co-co-doped (Ca,La)112 or (Ca,Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca,Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca,Eu)112 than other (Ca,RE)112.
Superconducting properties of Co-co-doped (Ca,RE)FeAs2 ((Ca,RE)112: RE = La, Pr) were investigated. Co-co-doping increased Tc of (Ca,Pr)112 while Mn-co-doping suppressed superconductivity of (Ca,RE)112. Co-co-doped (Ca,La)112 showed large diamagnetic screening and sharper superconducting transition than Co-free (Ca,La)112. Tczero observed in resistivity measurements increased from 14 K to 30 K by Co-co-doping, while Tconset was not increased. The critical current density (Jc) of Co-co-doped (Ca,La)112 were approximately 2.1 x 104 Acm-2 and 3.2 x 103 Acm-2 at 2 K and 25 K, respectively, near zero field. These relatively high Jcs and large diamagnetic screening observed in susceptibility measurement as for polycrystalline bulks suggest bulk superconductivity of Co-co-doped (Ca,RE)112 compounds.
In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe2As2 system, Pr doped and Pr,Co co-doped CaFe2As2 single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with Tc1 = 25~42 K, and Tc2 < 16 K, suggesting that (Ca,RE)Fe2As2 system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ~400{deg}C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ~400{deg}C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400{deg}C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below Tc2 and high Jc values of 104~105 Acm-2 at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe2As2 phase occurred below Tc2. On the contrary, the superconducting volume fraction above Tc2 was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.
Synthesis of a series of layered iron arsenides Ca1-xRExFeAs2 (112) was attempted by heating at 1000 C under a high-pressure of 2 GPa. The 112 phase successfully forms with RE = La, Ce, Nd, Sm, Eu and Gd, while Tb, Dy and Ho substituted and RE free s amples does not contain the 112 phase. The Ce, Nd, Sm, Eu and Gd doped Ca1-xRExFeAs2 are new compounds. All of them exhibit superconducting transition except for the Ce doped sample. The behaviour of the critical temperature, with the RE ionic radii have been investigated.
A new iron-based superconductor (Ca,Pr)FeAs2 was discovered. Plate-like crystals of the new phase were obtained and crystal structure was investigated by single-crystal X-ray diffraction analysis. The structure was identified as the monoclinic system with space group P21/m, and is composed of two Ca(Pr) planes, anti-fluorite Fe2As2 layers, and As2 zigzag chain layers. Plate-like crystals composed of the new phase showed superconductivity with Tc ~20 K in both magnetization and resistivity measurements.
We have discovered a new homologous series of iron pnictide oxides (Fe2As2)(Can+2(Al,Ti)nOy)[n = 2,3,4]. These compounds have perovskite-like blocking layers between Fe2As2 layers. The structure of new compounds are tetragonal with space groups of P4 /nmm for n = 2 and 4 and P4mm for n = 3, which are similar to those of (Fe2As2)(Can+1(Sc,Ti)nOy)[n = 3,4,5] found in our previous study. Compounds with n = 3 and 4 have new crystal structures with 3 and 4 sheets of perovskite layers, respectively, including a rock salt layer in each blocking layer. The a-axis lengths of the three compounds are approximately 3.8 A, which are close to those of FeSe and LiFeAs. (Fe2As2)(Ca6(Al,Ti)4Oy) exhibited bulk superconductivity in magnetization measurement with Tc(onset)~36 K and resistivity drop was observed at ~39 K. (Fe2As2)(Ca5(Al,Ti)3Oy) also showed large diamagnetism at low temperatures. These new compounds indicate considerable rooms are still remaining for new superconductors in layered iron pnictides.
A new layered iron arsenide oxide (Fe2As2)(Ca5(Mg,Ti)4Oy) and its structural derivative were found in the Fe-As-Ca-Mg-Ti-O system. The crystal structure of (Fe2As2)(Ca5(Mg,Ti)4Oy) is identical to that of (Fe2As2)(Ca5(Sc,Ti)4Oy), which was reported in our previous study. The lattice constants of this compound are a = 3.86(4) A and c = 41.05(2) A. In addition, another phase with a thicker blocking layer was found. The structure of the compound and its derivative was tentatively assigned through STEM observation as (Fe2As2)(Ca8(Mg,Ti)6Oy) with sextuple perovskite-type sheets divided by a rock salt layer. The interlayer Fe-Fe distance of this compound is ~30 A. The compound and its derivative exhibited bulk superconductivity, as found from magnetization and resistivity measurements.
A new layered iron arsenide oxide (Fe2As2)(Ca4(Mg,Ti)3Oy) was discovered. Its crystal structure is tetragonal with a space group of I4/mmm consisted of the anti-fluorite type FeAs layer and blocking layer of triple perovskite cells and is identical w ith (Fe2As2)(Sr4(Sc,Ti)3O8) discovered in our previous study. The lattice constants of (Fe2As2)(Ca4(Mg,Ti)3Oy) are a = 3.877 A and c = 33.37 A. This compound exhibited bulk superconductivity up to 43 K in susceptibility measurement without intentional carrier doping. A resistivity drop was observed at ~47 K and zero resistance was achieved at 42 K. These values correspond to the second highest Tc among the layered iron-based superconductors after REFeAsO system.
We have discovered first homologous series of iron pnictide oxide superconductors (Fe2As2)(Can+1(Sc,Ti)nOy) [n = 3,4,5]. These compounds have extremely thick blocking layers up to quintuple perovskite oxide layers sandwiched by the Fe2As2 layers. The se samples exhibited bulk superconductivity with relatively high Tc up to 42 K. The relationship between Tc and the iron-plane interlayer distance suggested that superconductivity due to the mono Fe2As2 layer is substantially 40 K-class.
We synthesized new layered iron arsenide oxides (Fe2As2)(Sr4(Sc,Ti)3O8),(Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5). The crystal structures of these compounds are tetragonal with a space group of I4/mmm. The structure of (Fe2As2)(Sr4(Sc,Ti)3O8) and (Fe2As2)(Ba4Sc3O7.5) consists of the alternate stacking of antifluorite Fe2As2 layers and triple perovskite-type oxide layers. The interlayer distance between the Fe planes of (Fe2As2)(Ba4Sc3O7.5) is ~18.7 A. Moreover, the a-axis of (Fe2As2)(Ba3Sc2O5) is the longest among the layered iron pnictides, indicating the structural flexibility of the layered iron pnictide containing perovskite-type layers. The bulk sample of (Fe2As2)(Sr4(Sc0.6Ti0.4)3O8) exhibited diamagnetism up to 28 K in susceptibility measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا