ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constr ucted from data obtained between June 2011 and December 2011 show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between November 2005 and December 2005 when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.
We present the results of our search for a dynamical family around the active asteroid P/2012F5 (Gibbs). By applying the hierarchical clustering method, we discover an extremely compact 9-body cluster associated with P/2012F5. The statistical signifi cance of this newly discovered Gibbs cluster is estimated to be >99.9%, strongly suggesting that its members share a common origin. The cluster is located in a dynamically cold region of the outer main-belt at a proper semi-major axis of about 3.005 AU, and all members are found to be dynamically stable over very long time-scales. Backward numerical orbital integrations show that the age of the cluster is only 1.5 $pm$ 0.1 Myr. Taxonomic classifications are unavailable for most of the cluster members, but SDSS spectrophotometry available for two cluster members indicate that both appear to be $Q$-type objects. We also estimate a lower limit of the size of the parent body to be about 10 km, and find that the impact event which produced the Gibbs cluster is intermediate between a cratering and a catastrophic collision. In addition, we search for new main-belt comets in the region of the Gibbs cluster by observing seven asteroids either belonging to the cluster, or being very close in the space of orbital proper elements. However, we do not detect any convincing evidence of the presence of a tail or coma in any our targets. Finally, we obtain optical images of P/2012F5, and find absolute R-band and V-band magnitudes of $H_R$ = 17.0 $pm$ 0.1 mag and $H_V$ = 17.4 $pm$ 0.1 mag, respectively, corresponding to an upper limit on the diameter of the P/2012F5 nucleus of about 2 km.
We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m t elescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The objects intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.
We present observations of comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS 1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed from August 2010 through February 2011, while a dust trail aligned with the objects orbit plane is also observed from December 2010 through August 2011. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between August 2010 and December 2010, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H_R=17.9+/-0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an albedo of p=0.05. Using optical spectroscopy, we find no evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q_CN<6x10^23 mol/s, from which we infer an H2O production rate of Q_H2O<10^26 mol/s. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is likely representative of other objects in the same region of the main belt, though the relatively close proximity of the 13:6 mean-motion resonance with Jupiter and the (3,-2,-1) three-body mean-motion resonance with Jupiter and Saturn mean that dynamical instability on larger timescales cannot be ruled out.
30 - Henry H. Hsieh 2008
The main-belt comets occupy dynamically asteroidal orbits in the main asteroid belt. Here we present physical observations of the second-known member of this population, P/2005 U1 (Read), which showed vigorous cometary activity from 2005 October 24 t o 2005 December 27. Monte Carlo numerical simulations of P/Reads dust emission indicate that the coma and tail are optically dominated by dust particles larger than 10 microns in size with terminal ejection velocities of 0.2 to 3 m/s. We estimate P/Reads mass loss rate during this period to be approximately 0.2 kg/s, roughly an order of magnitude larger than that calculated for 133P/Elst-Pizarro. We also find that emission likely began at least two months prior to P/Reads discovery, though we note this is a lower limit and that earlier start times are possible. Optical colors measured for P/Read while it was active are approximately solar (B-V=0.63+/-0.05, V-R=0.37+/-0.04, R-I=0.39+/-0.04) but are likely to be dominated by coma particles. Observations of P/Read in 2007 when it appears largely inactive show an extremely small nucleus with an absolute magnitude of H_R~20.1+/-0.4, corresponding to an effective radius of r~0.3 km. P/Reads activity is consistent with sublimation-driven dust emission and inconsistent with dust emission due to an impact, though the unusual strength of the 2005 outburst suggests the possibility that it could have been due to the sublimation of a freshly-exposed reservoir of volatile material.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا