ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a notion of compatibility between (almost) Dirac structures and (1,1)-tensor fields extending that of Poisson-Nijenhuis structures. We study several properties of the Dirac-Nijenhuis structures thus obtained, including their connection w ith holomorphic Dirac structures, the geometry of their leaves and quotients, as well as the presence of hierarchies. We also consider their integration to Lie groupoids, which includes the integration of holomorphic Dirac structures as a special case.
We introduce Poisson double algebroids, and the equivalent concept of double Lie bialgebroid, which arise as second-order infinitesimal counterparts of Poisson double groupoids. We develop their underlying Lie theory, showing how these objects are re lated by differentiation and integration. We use these results to revisit Lie 2-bialgebras by means of Poisson double structures.
The space of vector-valued forms on any manifold is a graded Lie algebra with respect to the Frolicher-Nijenhuis bracket. In this paper we consider multiplicative vector-valued forms on Lie groupoids and show that they naturally form a graded Lie sub algebra. Along the way, we discuss various examples and different characterizations of multiplicative vector-valued forms.
We briefly review our results on the Lie theory underlying vector bundles over Lie groupoids and Lie algebroids, pointing out the role of Poisson geometry in extending these results to double Lie algebroids and LA-groupoids.
For a Poisson manifold $M$ we develop systematic methods to compute its Picard group $Pic(M)$, i.e., its group of self Morita equivalences. We establish a precise relationship between $Pic(M)$ and the group of gauge transformations up to Poisson diff eomorphisms showing, in particular, that their connected components of the identity coincide; this allows us to introduce the Picard Lie algebra of $M$ and to study its basic properties. Our methods lead, in particular, to the proof of a conjecture from [BW04] stating that for any compact simple Lie algebra $mathfrak{g}$ the group $Pic(mathfrak{g}^*)$ concides with the group of outer automorphisms of $mathfrak{g}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا