ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the first 100 sq. deg. of overlap between the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey to determine the galaxy halo mass of ~10,000 spectroscopically-confirmed satellite galaxies in massive ($M > 10^{13}h^{-1}{r m M}_odot$) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White (NFW) density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses $log M_{rm sub} /(h^{-1}{rm M}_odot) approx 11.7 - 12.2$ consistent across group-centric distance within the errorbars. Given their typical stellar masses, $log M_{rm star,sat}/(h^{-2}{rm M}_odot) sim 10.5$, such total masses imply stellar mass fractions of $M_{rm star,sat} /M_{rm sub} approx 0.04 h^{-1}$ . The average subhalo hosting these satellite galaxies has a mass $M_{rm sub} sim 0.015M_{rm host}$ independent of host halo mass, in broad agreement with the expectations of structure formation in a $Lambda$CDM universe.
We study a sample of ~10^4 galaxy clusters in the redshift range 0.2<z<0.8 with masses M_200 > 5x10^13 h_70^-1 M_sun, discovered in the second Red-sequence Cluster Survey (RCS2). The depth and excellent image quality of the RCS2 enable us to detect t he cluster-mass cross-correlation up to z~0.7. To obtain cluster masses, concentrations and halo biases, we fit a cluster halo model simultaneously to the lensing signal and to the projected density profile of red-sequence cluster members, as the latter provides tight constraints on the cluster miscentring distribution. We parametrise the mass-richness relation as M_200 = A x (N_200/20)^alpha, and find A = (15.0 +- 0.8) x 10^13 h_70^-1 M_sun and alpha = 0.73 +- 0.07 at low redshift (0.2<z<0.35). At intermediate redshift (0.35<z<0.55), we find a higher normalisation, which points at a fractional increase of the richness towards lower redshift caused by the build-up of the red-sequence. The miscentring distribution is well constrained. Only ~30% of our BCGs coincide with the peak of the dark matter distribution. The distribution of the remaining BCGs are modelled with a 2D-Gaussian, whose width increases from 0.2 to 0.4 h_70^-1 Mpc towards higher masses; the ratio of width and r_200 is constant with mass and has an average value of 0.44 +- 0.01. The mass-concentration and mass-bias relation agree fairly well with literature results at low redshift, but have a higher normalisation at higher redshifts, which may be due to selection and projection effects. The concentration of the satellite distribution decreases with mass and is correlated with the concentration of the halo.
Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physic s of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.
We study the evolution of the luminosity-to-halo mass relation of Luminous Red Galaxies (LRGs). We select a sample of 52 000 LOWZ and CMASS LRGs from the Baryon Oscillation Spectroscopic Survey (BOSS) SDSS-DR10 in the ~450 deg^2 that overlaps with im aging data from the second Red-sequence Cluster Survey (RCS2), group them into bins of absolute magnitude and redshift and measure their weak lensing signals. The source redshift distribution has a median of 0.7, which allows us to study the lensing signal as a function of lens redshift. We interpret the lensing signal using a halo model, from which we obtain the halo masses as well as the normalisations of the mass-concentration relations. We find that the concentration of haloes that host LRGs is consistent with dark matter only simulations once we allow for miscentering or satellites in the modelling. The slope of the luminosity-to-halo mass relation has a typical value of 1.4 and does not change with redshift, but we do find evidence for a change in amplitude: the average halo mass of LOWZ galaxies increases by 25_{-14}^{+16} % between z=0.36 and 0.22 to an average value of 6.43+/-0.52 x 10^13 h70^-1 Msun. If we extend the redshift range using the CMASS galaxies and assume that they are the progenitors of the LOWZ sample, we find that the average mass of LRGs increases by 80^{+39}_{-28} % between z=0.6 and 0.2
We study the radial number density and stellar mass density distributions of satellite galaxies in a sample of 60 massive clusters at 0.04<z<0.26 selected from the Multi-Epoch Nearby Cluster Survey (MENeaCS) and the Canadian Cluster Comparison Projec t (CCCP). In addition to ~10,000 spectroscopically confirmed member galaxies, we use deep ugri-band imaging to estimate photometric redshifts and stellar masses, and then statistically subtract fore-, and background sources using data from the COSMOS survey. We measure the galaxy number density and stellar mass density distributions in logarithmically spaced bins over 2 orders of magnitude in radial distance from the BCGs. For projected distances in the range 0.1<R/R200<2.0, we find that the stellar mass distribution is well-described by an NFW profile with a concentration of c=2.03+/-0.20. However, at smaller radii we measure a significant excess in the stellar mass in satellite galaxies of about $10^{11}$ Msun per cluster, compared to these NFW profiles. We do obtain good fits to generalized NFW profiles with free inner slopes, and to Einasto profiles. To examine how clusters assemble their stellar mass component over cosmic time, we compare this local sample to the GCLASS cluster sample at z~1, which represents the approximate progenitor sample of the low-z clusters. This allows for a direct comparison, which suggests that the central parts (R<0.4 Mpc) of the stellar mass distributions of satellites in local galaxy clusters are already in place at z~1, and contain sufficient excess material for further BCG growth. Evolving towards z=0, clusters appear to assemble their stellar mass primarily onto the outskirts, making them grow in an inside-out fashion.
We present the results from a weak gravitational lensing study of the merging cluster A520 based on the analysis of Hubble Space Telescope/Advanced Camera for Surveys (ACS) data. The excellent data quality allows us to reach a mean number density of source galaxies of ~109 per sq. arcmin, which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the trailing of charge due to radiation damage of the ACS detector and the position-dependent point spread function (PSF). This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters. We examine the distribution of cluster galaxies and observe very little light at this location. We find that the centroid of the dark peak in the current ACS analysis is offset to the southwest by ~1 arcmin with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better spatial agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher 813+-78 M_sun/L_Rsun than the previous value; the aperture mass based on the WFPC2 centroid provides a slightly lower, but consistent mass. Although we cannot provide a definite explanation for the presence of the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range sigma_DM/m_DM < 1 cm^2/g of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.
We present a study of the relation between dark matter halo mass and the baryonic content of host galaxies, quantified via luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensin g and photometric data, obtained from the CFHT Legacy Survey. We employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4. We express the relationship between halo mass and baryonic observable as a power law. For the luminosity-halo mass relation we find a slope of 1.32+/-0.06 and a normalisation of 1.19+0.06-0.07x10^13 h70^-1 Msun for red galaxies, while for blue galaxies the best-fit slope is 1.09+0.20-0.13 and the normalisation is 0.18+0.04-0.05x10^13 h70^-1 Msun. Similarly, we find a best-fit slope of 1.36+0.06-0.07 and a normalisation of 1.43+0.11-0.08x10^13 h70^-1 Msun for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16x10^13 h70^-1 Msun. For red lenses, the fraction which are satellites tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2x10^9 h70^-2 Msun. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies. We also find that the halo model, while matching the lensing signal around red lenses well, is prone to over-predicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. [abridged]
The spatial variation of the colour of a galaxy may introduce a bias in the measurement of its shape if the PSF profile depends on wavelength. We study how this bias depends on the properties of the PSF and the galaxies themselves. The bias depends o n the scales used to estimate the shape, which may be used to optimise methods to reduce the bias. Here we develop a general approach to quantify the bias. Although applicable to any weak lensing survey, we focus on the implications for the ESA Euclid mission. Based on our study of synthetic galaxies we find that the bias is a few times 10^-3 for a typical galaxy observed by Euclid. Consequently, it cannot be neglected and needs to be accounted for. We demonstrate how one can do so using spatially resolved observations of galaxies in two filters. We show that HST observations in the F606W and F814W filters allow us to model and reduce the bias by an order of magnitude, sufficient to meet Euclids scientific requirements. The precision of the correction is ultimately determined by the number of galaxies for which spatially-resolved observations in at least two filters are available. We use results from the Millennium Simulation to demonstrate that archival HST data will be sufficient for the tomographic cosmic shear analysis with the Euclid dataset.
We present the results of a weak gravitational lensing analysis to determine whether the stellar mass or the velocity dispersion is more closely related to the amplitude of the lensing signal around galaxies - and hence to the projected distribution of dark matter. The lensing signal on scales smaller than the virial radius corresponds most closely to the lensing velocity dispersion in the case of a singular isothermal profile, but is on larger scales also sensitive to the clustering of the haloes. We select over 4000 lens galaxies at a redshift z<0.2 with concentrated (or bulge-dominated) surface brightness profiles from the ~300 square degree overlap between the Red-sequence Cluster Survey 2 (RCS2) and the data release 7 (DR7) of the Sloan Digital Sky Survey (SDSS). We consider both the spectroscopic velocity dispersion and a model velocity dispersion (a combination of the stellar mass, the size and the Sersic index of a galaxy). Comparing the model and spectroscopic velocity dispersion we find that they correlate well for galaxies with concentrated brightness profiles. We find that the stellar mass and the spectroscopic velocity dispersion trace the amplitude of the lensing signal on small scales equally well. The model velocity dispersion, however, does significantly worse. A possible explanation is that the halo properties that determine the small-scale lensing signal - mainly the total mass - also depend on the structural parameters of galaxies, such as the effective radius and Sersic index, but we lack data for a definitive conclusion.
Accurate knowledge of the effect of feedback from galaxy formation on the matter distribution is a key requirement for future weak lensing experiments. Recent studies using hydrodynamic simulations have shown that different baryonic feedback scenario s lead to significantly different two-point shear statistics. In this paper we extend earlier work to three-point shear statistics. We show that, relative to the predictions of dark matter only models, the amplitude of the signal can be reduced by as much as 30-40% on scales of a few arcminutes. We find that baryonic feedback may affect two- and three-point shear statistics differently and demonstrate that this can be used to assess the fidelity of various feedback models. In particular, upcoming surveys such as Euclid might be able to discriminate between different feedback models by measuring both second- and third-order statistics. Because it will likely remain impossible to predict baryonic feedback with high accuracy from first principles, we argue in favour of phenomenological models that can capture the relevant effects of baryonic feedback processes in addition to changes in cosmology. We construct such a model by modifying the dark matter-only halo model to characterise the generic effects of energetic feedback using a small number of parameters. We use this model to perform a likelihood analysis in a simplified case in which two- and three-point shear statistics are measured between 0.5 and 20 arcmin and in which the amplitude of fluctuations, sigma8, the matter density parameter, Om, and the dark energy parameter, w0, are the only unknown free parameters. We demonstrate that for weak lensing surveys such as Euclid, marginalising over the feedbac parameters describing the effects of baryonic processes, such as outflows driven by feedback from star formation and AGN, may be able to mitigate the bias affecting Om, sigma8 and w0.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا