ترغب بنشر مسار تعليمي؟ اضغط هنا

This supplement illustrates application of adaptive observer design from (Tyukin et al, 2013) for systems which are not uniquely identifiable. It also provides an example of adaptive observer design for a magnetic bearings benchmark system (Lin, Knospe, 2000).
We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly pa rameterized functions of state and time. Reconstruction of state and parameter values is based on the concepts of weakly attracting sets and non-uniform convergence and is subjected to persistency of excitation conditions. In absence of nonlinear parametrization the resulting observers reduce to standard estimation schemes. In this respect, the proposed method constitutes a generalization of the conventional canonical adaptive observer design.
We consider the problem of asymptotic convergence to invariant sets in interconnected nonlinear dynamic systems. Standard approaches often require that the invariant sets be uniformly attracting. e.g. stable in the Lyapunov sense. This, however, is n either a necessary requirement, nor is it always useful. Systems may, for instance, be inherently unstable (e.g. intermittent, itinerant, meta-stable) or the problem statement may include requirements that cannot be satisfied with stable solutions. This is often the case in general optimization problems and in nonlinear parameter identification or adaptation. Conventional techniques for these cases rely either on detailed knowledge of the systems vector-fields or require boundeness of its states. The presently proposed method relies only on estimates of the input-output maps and steady-state characteristics. The method requires the possibility of representing the system as an interconnection of a stable, contracting, and an unstable, exploratory part. We illustrate with examples how the method can be applied to problems of analyzing the asymptotic behavior of locally unstable systems as well as to problems of parameter identification and adaptation in the presence of nonlinear parametrizations. The relation of our results to conventional small-gain theorems is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا