ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the analytic presentations of the high-order correlation functions in the N-slit diffraction with thermal light in a recent paper [Phys. Rev. Lett. 109, 233603 (2012)]. Our analysis shows that the superresolving fringes in the high-order c orrelation measurement have two classical counterparts.
Phase reversal occurs in the propagation of an electromagnetic wave in a negatively refracting medium or a phase-conjugate interface. Here we report the experimental observation of phase reversal diffraction without the above devices. Our experimenta l results and theoretical analysis demonstrate that phase reversal diffraction can be formed through the first-order field correlation of chaotic light. The experimental realization is similar to phase reversal behavior in negatively refracting media.
288 - Su-Heng Zhang , Lu Gao , Jun Xiong 2008
It is well known that direct observation of interference and diffraction pattern in the intensity distribution requires a spatially coherent source. Optical waves emitted from portions beyond the coherence area possess statistically independent phase s, and will degrade the interference pattern. In this paper we show an optical interference experiment, which seems contrary to our common knowledge, that the formation of the interference pattern is related to a spatially incoherent light source. Our experimental scheme is very similar to Gabors original proposal of holography[1], just with an incoherent source replacing the coherent one. In the statistical ensemble of the incoherent source, each sample field produces a sample interference pattern between object wave and reference wave. These patterns completely differ from each other due to the fluctuation of the source field distribution. Surprisingly, the sum of a great number of sample patterns exhibits explicitly an interference pattern, which contains all the information of the object and is equivalent to a hologram in the coherent light case. In this sense our approach would be valuable in holography and other interference techniques for the case where coherent source is unavailable, such as x-ray and electron sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا