ترغب بنشر مسار تعليمي؟ اضغط هنا

In the quasilinear Regge trajectory ansatz, some useful linear mass inequalities, quadratic mass inequalities and quadratic mass equalities are derived for mesons and baryons. Based on these relations, mass ranges of some mesons and baryons are given . The masses of bc-bar and ss-bar belonging to the pseudoscalar, vector and tensor meson multiplets are also extracted. The J^P of the baryon Xi_cc(3520) is assigned to be 1/2^+. The numerical values for Regge slopes and intercepts of the 1/2^+ and 3/2^+ SU(4) baryon trajectories are extracted and the masses of the orbital excited baryons lying on the 1/2^+ and 3/2^+ trajectories are estimated. The J^P assignments of baryons Xi_c(2980), Xi_c(3055), Xi_c(3077) and Xi_c(3123) are discussed. The predictions are in reasonable agreement with the existing experimental data and those suggested in many other different approaches. The mass relations and the predictions may be useful for the discovery of the unobserved meson and baryon states and the J^P assignment of these states.
In this work we evaluate the cross section of the process $e^+e^-to J/psi eta_c$ at energy $sqrt{s}approx 10.6$ GeV in the Bethe-Salpeter formalism. To simplify our calculation, the heavy quark limit is employed. Without taking the beyond-leading-ord er contribution(s) into account, the cross section calculated in this scenario is comparable with the experimental data. We also present our prediction for the cross section of double bottomonium production $e^+e^-to Upsilon(1S)eta_b$ for the energy range of $sqrt{s}approx (25 hbox{-} 30)$ GeV which may be experimentally tested, even though there is no facility of this range available at present yet.
In this paper we study the properties of diquarks (composed of $u$ and/or $d$ quarks) in the Bethe-Salpeter formalism under the covariant instantaneous approximation. We calculate their BS wave functions and study their effective interaction with the pion. Using the effective coupling constant among the diquarks and the pion, in the heavy quark limit $m_Qtoinfty$, we calculate the decay widths of $Sigma_Q^{(*)}$ ($Q=c,b$) in the BS formalism under the covariant instantaneous approximation and then give predictions of the decay widths $Gamma(Sigma_b^{(*)}toLambda_b+pi)$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا