ترغب بنشر مسار تعليمي؟ اضغط هنا

Consider finite sequences $X_{[1,n]}=X_1dots X_n$ and $Y_{[1,n]}=Y_1dots Y_n$ of length $n$, consisting of i.i.d. samples of random letters from a finite alphabet, and let $S$ and $T$ be chosen i.i.d. randomly from the unit ball in the space of symme tric scoring functions over this alphabet augmented by a gap symbol. We prove a probabilistic upper bound of linear order in $n^{0.75}$ for the deviation of the score relative to $T$ of optimal alignments with gaps of $X_{[1,n]}$ and $Y_{[1,n]}$ relative to $S$. It remains an open problem to prove a lower bound. Our result contributes to the understanding of the microstructure of optimal alignments relative to one given scoring function, extending a theory begun by the first two authors.
We investigate the behavior of optimal alignment paths for homologous (related) and independent random sequences. An alignment between two finite sequences is optimal if it corresponds to the longest common subsequence (LCS). We prove the existence o f lowest and highest optimal alignments and study their differences. High differences between the extremal alignments imply the high variety of all optimal alignments. We present several simulations indicating that the homologous (having the same common ancestor) sequences have typically the distance between the extremal alignments of much smaller size than independent sequences. In particular, the simulations suggest that for the homologous sequences, the growth of the distance between the extremal alignments is logarithmical. The main theoretical results of the paper prove that (under some assumptions) this is the case, indeed. The paper suggests that the properties of the optimal alignment paths characterize the relatedness of the sequences.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا