ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle-based approximate Bayesian inference approaches such as Stein Variational Gradient Descent (SVGD) combine the flexibility and convergence guarantees of sampling methods with the computational benefits of variational inference. In practice, S VGD relies on the choice of an appropriate kernel function, which impacts its ability to model the target distribution -- a challenging problem with only heuristic solutions. We propose Neural Variational Gradient Descent (NVGD), which is based on parameterizing the witness function of the Stein discrepancy by a deep neural network whose parameters are learned in parallel to the inference, mitigating the necessity to make any kernel choices whatsoever. We empirically evaluate our method on popular synthetic inference problems, real-world Bayesian linear regression, and Bayesian neural network inference.
We propose NeRF-VAE, a 3D scene generative model that incorporates geometric structure via NeRF and differentiable volume rendering. In contrast to NeRF, our model takes into account shared structure across scenes, and is able to infer the structure of a novel scene -- without the need to re-train -- using amortized inference. NeRF-VAEs explicit 3D rendering process further contrasts previous generative models with convolution-based rendering which lacks geometric structure. Our model is a VAE that learns a distribution over radiance fields by conditioning them on a latent scene representation. We show that, once trained, NeRF-VAE is able to infer and render geometrically-consistent scenes from previously unseen 3D environments using very few input images. We further demonstrate that NeRF-VAE generalizes well to out-of-distribution cameras, while convolutional models do not. Finally, we introduce and study an attention-based conditioning mechanism of NeRF-VAEs decoder, which improves model performance.
Graph neural networks (GNNs) are a powerful inductive bias for modelling algorithmic reasoning procedures and data structures. Their prowess was mainly demonstrated on tasks featuring Markovian dynamics, where querying any associated data structure d epends only on its latest state. For many tasks of interest, however, it may be highly beneficial to support efficient data structure queries dependent on previous states. This requires tracking the data structures evolution through time, placing significant pressure on the GNNs latent representations. We introduce Persistent Message Passing (PMP), a mechanism which endows GNNs with capability of querying past state by explicitly persisting it: rather than overwriting node representations, it creates new nodes whenever required. PMP generalises out-of-distribution to more than 2x larger test inputs on dynamic temporal range queries, significantly outperforming GNNs which overwrite states.
When fitting Bayesian machine learning models on scarce data, the main challenge is to obtain suitable prior knowledge and encode it into the model. Recent advances in meta-learning offer powerful methods for extracting such prior knowledge from data acquired in related tasks. When it comes to meta-learning in Gaussian process models, approaches in this setting have mostly focused on learning the kernel function of the prior, but not on learning its mean function. In this work, we explore meta-learning the mean function of a Gaussian process prior. We present analytical and empirical evidence that mean function learning can be useful in the meta-learning setting, discuss the risk of overfitting, and draw connections to other meta-learning approaches, such as model agnostic meta-learning and functional PCA.
Kernel methods on discrete domains have shown great promise for many challenging data types, for instance, biological sequence data and molecular structure data. Scalable kernel methods like Support Vector Machines may offer good predictive performan ces but do not intrinsically provide uncertainty estimates. In contrast, probabilistic kernel methods like Gaussian Processes offer uncertainty estimates in addition to good predictive performance but fall short in terms of scalability. While the scalability of Gaussian processes can be improved using sparse inducing point approximations, the selection of these inducing points remains challenging. We explore different techniques for selecting inducing points on discrete domains, including greedy selection, determinantal point processes, and simulated annealing. We find that simulated annealing, which can select inducing points that are not in the training set, can perform competitively with support vector machines and full Gaussian processes on synthetic data, as well as on challenging real-world DNA sequence data.
We propose Kernel Hamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where classical HMC is not an option due to intractable gradients, KMC adaptively learns the targets gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency, and offers substantial mixing improvements over state-of-the-art gradient free samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.
A key quantity of interest in Bayesian inference are expectations of functions with respect to a posterior distribution. Markov Chain Monte Carlo is a fundamental tool to consistently compute these expectations via averaging samples drawn from an app roximate posterior. However, its feasibility is being challenged in the era of so called Big Data as all data needs to be processed in every iteration. Realising that such simulation is an unnecessarily hard problem if the goal is estimation, we construct a computationally scalable methodology that allows unbiased estimation of the required expectations -- without explicit simulation from the full posterior. The schemes variance is finite by construction and straightforward to control, leading to algorithms that are provably unbiased and naturally arrive at a desired error tolerance. This is achieved at an average computational complexity that is sub-linear in the size of the dataset and its free parameters are easy to tune. We demonstrate the utility and generality of the methodology on a range of common statistical models applied to large-scale benchmark and real-world datasets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا