ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - Slim Tayachi , Hatem Zaag 2015
We consider the nonlinear heat equation with a nonlinear gradient term: $partial_t u =Delta u+mu| abla u|^q+|u|^{p-1}u,; mu>0,; q=2p/(p+1),; p>3,; tin (0,T),; xin R^N.$ We construct a solution which blows up in finite time $T>0.$ We also give a sharp description of its blow-up profile and show that it is stable with respect to perturbations in initial data. The proof relies on the reduction of the problem to a finite dimensional one, and uses the index theory to conclude. The blow-up profile does not scale as $(T-t)^{1/2}|log(T-t)|^{1/2},$ like in the standard nonlinear heat equation, i.e. $mu=0,$ but as $(T-t)^{1/2}|log(T-t)|^{beta}$ with $beta=(p+1)/[2(p-1)]>1/2.$ We also show that $u$ and $ abla u$ blow up simultaneously and at a single point, and give the final profile. In particular, the final profile is more singular than the case of the standard nonlinear heat equation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا