ترغب بنشر مسار تعليمي؟ اضغط هنا

A two step solid state reaction route has been presented to synthesize monophasic cobalt tellurate (Co3TeO6, CTO) using Co3O4 and TeO2 as starting reagents. During synthesis, initial ingredient Co3O4 is found better than CoO in circumventing the inte rmediate Co5TeO8 or CoTeO3 phases. High resolution Synchrotron X-ray Diffraction has been used to probe different phases present in synthesized CTO and to achieve its single phase. Further, XANES studies near Co K and Te L-edge reveal mixed oxidation states of Co (i.e. Co2+ and Co3+) and +VI valence state of Te respectively, which is also confirmed with XPS. Charge imbalance due to different oxidation states of the Co-ions has been observed to be compensated by plausible Te-cations vacancy. Enhanced multiferroic properties like effective magnetic moment (JAP 116, (2014)) have been correlated with the present synthesis route.
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV2O4 have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does n ot change the valence states in Mn and V. It has been shown that the obtained values of critical exponents b{eta}, {gamma} and {delta} do not belong to universal class and the values are in between the 3D Heisenberg model and the mean field interaction model. The magnetization data follow the scaling equation and collapse into two branches indicating that the calculated critical exponents and critical temperature are unambiguous and intrinsic to the system. All the samples show large magneto-caloric effect. The second peak in magneto-caloric curve of Mn0.95Zn0.05V2O4 is due to the strong coupling between orbital and spin degrees of freedom. But 10% Zn doping reduces the residual spins on the V-V pairs resulting the decrease of coupling between orbital and spin degrees of freedom.
Evidence of coexistence of Co3+ with Co2+ in ceramic Co3TeO6 through XANES, DC magnetization and first principal studies is provided. XANES along with linear combination fit provide relative concentrations of Co2+ and Co3+.Temperature dependent DC ma gnetization exhibits the same antiferromagnetic behavior as observed in single crystal. The presence of both Co2+ and Co3+ suggests that if the later is in high spin state, the effective magnetic moment is similar to that observed in single crystal studies. In contrast, if Co3+ is in low spin state effective magnetic moment is similar to that observed in Co3O4. It is further shown that both Co2+ and Co3+ in high spin states constitute a favorable ground state through first principle calculations where Rietveld refined Synchrotron X-ray diffraction data are inputs.
We report observation of magneto-electric and magneto-dielectric couplings in ceramic Co3TeO6. Temperature dependent DC magnetization and dielectric constant measurements together indicate coupling between magnetic order and electronic polarization. Strong anomaly in dielectric constant at ~ 18K in zero magnetic field indicates presence of spontaneous polarization. Observations like weak ferromagnetic order at lower temperature, field and temperature dependences of the ferroelectric transition provide experimental verification of the recent theoretical proposal by P. Toledano et al., Phys. Rev. B 85, 214439 (2012). We provide direct evidence of spin-phonon coupling as possible origin of magnetic order.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا