ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical properties of ice in the far infrared are important for models of protoplanetary and debris disks. In this report we derive a new set of data for the absorption (represented by the imaginary part of the refractive index $kappa$) of crysta lline water ice in this spectral range, including a detailed inspection of the temperature dependence, which had not been done in such detail before. We measured the transmission of three ice layers with different thicknesses at temperatures $vartheta = 10...250$K and present data at wavelengths $lambda=80...625$ microns. We found a change in the spectral dependence of $kappa$ at a wavelength of $175 pm 6$ microns. At shorter wavelengths, $kappa$ exhibits a constant flat slope and no significant temperature dependence. Long-ward of that wavelength, the slope gets steeper and has a clear, approximately linear temperature dependence. This change in the behaviour is probably caused by a characteristic absorption band of water ice. The measured data were fitted by a power-law model that analytically describes the absorption behaviour at an arbitrary temperature. This model can readily be applied to any object of interest, for instance a protoplanetary or a debris disk. To illustrate how the model works, we simulated the spectral energy distribution (SED) of the resolved, large debris disk around the nearby solar-type star HD 207129. Replacing our ice model by another, commonly used data set for water ice results in a different SED slope at longer wavelengths. This leads to changes in the characteristic model parameters of the disk, such as the inferred particle size distribution, and affects the interpretation of the underlying collisional physics of the disk.
Solid state spectroscopy continues to be an important source of information on the mineralogical composition and physical properties of dust grains both in space and on planetary surfaces. With only a few exceptions, artificially produced or natural terrestrial analog materials, rather than real cosmic dust grains, are the subject of solid state astrophysics. The Jena laboratory has provided a large number of data sets characterizing the UV, optical and infrared properties of such cosmic dust analogs. The present paper highlights recent developments and results achieved in this context, focussing on non-standard conditions such as very low temperatures, very high temperatures and very long wavelengths.
Several astrophysically relevant solid oxides and silicates have extremely small opacities in the visual and near-infrared in their pure forms. Datasets for the opacities and for the imaginary part k of their complex indices of refraction are hardly available in these wavelength ranges. We aimed at determining k for spinel, rutile, anatase, and olivine, especially in the near-infrared region. Our measurements were made with impurity-containing, natural, and synthetic stardust analogs. Two experimental methods were used: preparing small sections of natural minerals and synthesizing melt droplets under the electric arc furnace. In both cases, the aborption properties of the samples were measured by transmission spectroscopy. For spinel (MgAl2O4), anatase, rutile (both TiO2), and olivine ((Mg,Fe)2SiO4), the optical constants have been extended to the visual and near-infrared. We highlight that the individual values of k and the absorption cross section depend strongly on the content in transition metals like iron. Based on our measurements, we infer that k values below 10^(-5) are very rare in natural minerals including stardust grains, if they occur at all. Data for k and the absorption cross section are important for various physical properties of stardust grains such as temperature and radiation pressure. With increasing absorption cross section due to impurities, the equilibrium temperature of small grains in circumstellar shells increases as well. We discuss why and to what extent this is the case.
Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regul ating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا