ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive relationships between various types of small misalignments on a triangular Fabry-Perot cavity and associated geometrical eigenmode changes. We focus on the changes of beam spot positions on cavity mirrors, the beam waist position, and its a ngle. A comparison of analytical and numerical results shows excellent agreement. The results are applicable to any triangular cavity close to an isosceles triangle, with the lengths of two sides much bigger than the other, consisting of a curved mirror and two flat mirrors yielding a waist equally separated from the two flat mirrors. This cavity shape is most commonly used in laser interferometry. The analysis presented here can easily be extended to more generic cavity shapes. The geometrical analysis not only serves as a method of checking a simulation result, but also gives an intuitive and handy tool to visualize the eigenmode of a misaligned triangular cavity.
We propose a new interferometer technique for high precision phase measurements such as those in gravitational wave detection. The technique utilizes a pair of optically coupled resonators that provides identical resonance conditions for the upper as well the lower phase modulation signal sidebands. This symmetry significantly reduces the noise spectral density in a wide frequency band compared with single sideband recycling topologies of current and planned gravitational wave detectors. Furthermore the application of squeezed states of light becomes less demanding.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا