ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain generalization aims to learn an invariant model that can generalize well to the unseen target domain. In this paper, we propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentangleme nt Network (VDN), which is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data. We further show the rationale of our proposed method by proving that our proposed framework is equivalent to minimize the evidence upper bound of the divergence between the distribution of task-specific features and its invariant ground truth derived from variational inference. We conduct extensive experiments to verify our method on three benchmarks, and both quantitative and qualitative results illustrate the effectiveness of our method.
The technological advancements of deep learning have enabled sophisticated face manipulation schemes, raising severe trust issues and security concerns in modern society. Generally speaking, detecting manipulated faces and locating the potentially al tered regions are challenging tasks. Herein, we propose a conceptually simple but effective method to efficiently detect forged faces in an image while simultaneously locating the manipulated regions. The proposed scheme relies on a segmentation map that delivers meaningful high-level semantic information clues about the image. Furthermore, a noise map is estimated, playing a complementary role in capturing low-level clues and subsequently empowering decision-making. Finally, the features from these two modules are combined to distinguish fake faces. Extensive experiments show that the proposed model achieves state-of-the-art detection accuracy and remarkable localization performance.
Though convolutional neural networks are widely used in different tasks, lack of generalization capability in the absence of sufficient and representative data is one of the challenges that hinder their practical application. In this paper, we propos e a simple, effective, and plug-and-play training strategy named Knowledge Distillation for Domain Generalization (KDDG) which is built upon a knowledge distillation framework with the gradient filter as a novel regularization term. We find that both the ``richer dark knowledge from the teacher network, as well as the gradient filter we proposed, can reduce the difficulty of learning the mapping which further improves the generalization ability of the model. We also conduct experiments extensively to show that our framework can significantly improve the generalization capability of deep neural networks in different tasks including image classification, segmentation, reinforcement learning by comparing our method with existing state-of-the-art domain generalization techniques. Last but not the least, we propose to adopt two metrics to analyze our proposed method in order to better understand how our proposed method benefits the generalization capability of deep neural networks.
Deep learning-based techniques have been widely applied to the program analysis tasks, in fields such as type inference, fault localization, and code summarization. Hitherto deep learning-based software engineering systems rely thoroughly on supervis ed learning approaches, which require laborious manual effort to collect and label a prohibitively large amount of data. However, most Turing-complete imperative languages share similar control- and data-flow structures, which make it possible to transfer knowledge learned from one language to another. In this paper, we propose cross-lingual adaptation of program analysis, which allows us to leverage prior knowledge learned from the labeled dataset of one language and transfer it to the others. Specifically, we implemented a cross-lingual adaptation framework, PLATO, to transfer a deep learning-based type inference procedure across weakly typed languages, e.g., Python to JavaScript and vice versa. PLATO incorporates a novel joint graph kernelized attention based on abstract syntax tree and control flow graph, and applies anchor word augmentation across different languages. Besides, by leveraging data from strongly typed languages, PLATO improves the perplexity of the backbone cross-programming-language model and the performance of downstream cross-lingual transfer for type inference. Experimental results illustrate that our framework significantly improves the transferability over the baseline method by a large margin.
Deep neural networks (DNN) have demonstrated unprecedented success for medical imaging applications. However, due to the issue of limited dataset availability and the strict legal and ethical requirements for patient privacy protection, the broad app lications of medical imaging classification driven by DNN with large-scale training data have been largely hindered. For example, when training the DNN from one domain (e.g., with data only from one hospital), the generalization capability to another domain (e.g., data from another hospital) could be largely lacking. In this paper, we aim to tackle this problem by developing the privacy-preserving constrained domain generalization method, aiming to improve the generalization capability under the privacy-preserving condition. In particular, We propose to improve the information aggregation process on the centralized server-side with a novel gradient alignment loss, expecting that the trained model can be better generalized to the unseen but related medical images. The rationale and effectiveness of our proposed method can be explained by connecting our proposed method with the Maximum Mean Discrepancy (MMD) which has been widely adopted as the distribution distance measurement. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared to the state-of-the-art federated learning methods.
Searching for novel antiferromagnetic materials with large magnetotransport response is highly demanded for constructing future spintronic devices with high stability, fast switching speed, and high density. Here we report a colossal anisotropic magn etoresistance effect in an antiferromagnetic binary compound with layered structure rare-earth dichalcogenide EuTe2. The AMR reaches 40000%, which is 4 orders of magnitude larger than that in conventional antiferromagnetic alloys. Combined magnetization, resistivity, and theoretical analysis reveal that the colossal AMR effect is attributed to a novel mechanism of vector-field tunable band structure, rather than the conventional spin-orbit coupling mechanism. Moreover, it is revealed that the strong hybridization between orbitals of Eu-layer with localized spin and Te-layer with itinerant carriers is extremely important for the large AMR effect. Our results suggest a new direction towards exploring AFM materials with prominent magnetotransport properties, which creates an unprecedented opportunity for AFM spintronics applications.
This paper focuses on the domain generalization task where domain knowledge is unavailable, and even worse, only samples from a single domain can be utilized during training. Our motivation originates from the recent progresses in deep neural network (DNN) testing, which has shown that maximizing neuron coverage of DNN can help to explore possible defects of DNN (i.e., misclassification). More specifically, by treating the DNN as a program and each neuron as a functional point of the code, during the network training we aim to improve the generalization capability by maximizing the neuron coverage of DNN with the gradient similarity regularization between the original and augmented samples. As such, the decision behavior of the DNN is optimized, avoiding the arbitrary neurons that are deleterious for the unseen samples, and leading to the trained DNN that can be better generalized to out-of-distribution samples. Extensive studies on various domain generalization tasks based on both single and multiple domain(s) setting demonstrate the effectiveness of our proposed approach compared with state-of-the-art baseline methods. We also analyze our method by conducting visualization based on network dissection. The results further provide useful evidence on the rationality and effectiveness of our approach.
There has been an increasing consensus in learning based face anti-spoofing that the divergence in terms of camera models is causing a large domain gap in real application scenarios. We describe a framework that eliminates the influence of inherent v ariance from acquisition cameras at the feature level, leading to the generalized face spoofing detection model that could be highly adaptive to different acquisition devices. In particular, the framework is composed of two branches. The first branch aims to learn the camera invariant spoofing features via feature level decomposition in the high frequency domain. Motivated by the fact that the spoofing features exist not only in the high frequency domain, in the second branch the discrimination capability of extracted spoofing features is further boosted from the enhanced image based on the recomposition of the high-frequency and low-frequency information. Finally, the classification results of the two branches are fused together by a weighting strategy. Experiments show that the proposed method can achieve better performance in both intra-dataset and cross-dataset settings, demonstrating the high generalization capability in various application scenarios.
Recently, we have witnessed great progress in the field of medical imaging classification by adopting deep neural networks. However, the recent advanced models still require accessing sufficiently large and representative datasets for training, which is often unfeasible in clinically realistic environments. When trained on limited datasets, the deep neural network is lack of generalization capability, as the trained deep neural network on data within a certain distribution (e.g. the data captured by a certain device vendor or patient population) may not be able to generalize to the data with another distribution. In this paper, we introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification. Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding with a novel linear-dependency regularization term to capture the shareable information among medical data collected from different domains. As a result, the trained neural network is expected to equip with better generalization capability to the unseen medical data. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared with state-of-the-art baselines.
451 - Haoliang Li 2020
Deep neural networks (DNN) have shown great success in many computer vision applications. However, they are also known to be susceptible to backdoor attacks. When conducting backdoor attacks, most of the existing approaches assume that the targeted D NN is always available, and an attacker can always inject a specific pattern to the training data to further fine-tune the DNN model. However, in practice, such attack may not be feasible as the DNN model is encrypted and only available to the secure enclave. In this paper, we propose a novel black-box backdoor attack technique on face recognition systems, which can be conducted without the knowledge of the targeted DNN model. To be specific, we propose a backdoor attack with a novel color stripe pattern trigger, which can be generated by modulating LED in a specialized waveform. We also use an evolutionary computing strategy to optimize the waveform for backdoor attack. Our backdoor attack can be conducted in a very mild condition: 1) the adversary cannot manipulate the input in an unnatural way (e.g., injecting adversarial noise); 2) the adversary cannot access the training database; 3) the adversary has no knowledge of the training model as well as the training set used by the victim party. We show that the backdoor trigger can be quite effective, where the attack success rate can be up to $88%$ based on our simulation study and up to $40%$ based on our physical-domain study by considering the task of face recognition and verification based on at most three-time attempts during authentication. Finally, we evaluate several state-of-the-art potential defenses towards backdoor attacks, and find that our attack can still be effective. We highlight that our study revealed a new physical backdoor attack, which calls for the attention of the security issue of the existing face recognition/verification techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا