ترغب بنشر مسار تعليمي؟ اضغط هنا

117 - Pichao Wang , Xue Wang , Hao Luo 2021
Vision transformers (ViTs) have been an alternative design paradigm to convolutional neural networks (CNNs). However, the training of ViTs is much harder than CNNs, as it is sensitive to the training parameters, such as learning rate, optimizer and w armup epoch. The reasons for training difficulty are empirically analysed in ~cite{xiao2021early}, and the authors conjecture that the issue lies with the textit{patchify-stem} of ViT models and propose that early convolutions help transformers see better. In this paper, we further investigate this problem and extend the above conclusion: only early convolutions do not help for stable training, but the scaled ReLU operation in the textit{convolutional stem} (textit{conv-stem}) matters. We verify, both theoretically and empirically, that scaled ReLU in textit{conv-stem} not only improves training stabilization, but also increases the diversity of patch tokens, thus boosting peak performance with a large margin via adding few parameters and flops. In addition, extensive experiments are conducted to demonstrate that previous ViTs are far from being well trained, further showing that ViTs have great potential to be a better substitute of CNNs.
Community detection, aiming to group the graph nodes into clusters with dense inner-connection, is a fundamental graph mining task. Recently, it has been studied on the heterogeneous graph, which contains multiple types of nodes and edges, posing gre at challenges for modeling the high-order relationship between nodes. With the surge of graph embedding mechanism, it has also been adopted to community detection. A remarkable group of works use the meta-path to capture the high-order relationship between nodes and embed them into nodes embedding to facilitate community detection. However, defining meaningful meta-paths requires much domain knowledge, which largely limits their applications, especially on schema-rich heterogeneous graphs like knowledge graphs. To alleviate this issue, in this paper, we propose to exploit the context path to capture the high-order relationship between nodes, and build a Context Path-based Graph Neural Network (CP-GNN) model. It recursively embeds the high-order relationship between nodes into the node embedding with attention mechanisms to discriminate the importance of different relationships. By maximizing the expectation of the co-occurrence of nodes connected by context paths, the model can learn the nodes embeddings that both well preserve the high-order relationship between nodes and are helpful for community detection. Extensive experimental results on four real-world datasets show that CP-GNN outperforms the state-of-the-art community detection methods.
With the continuous improvement of the performance of object detectors via advanced model architectures, imbalance problems in the training process have received more attention. It is a common paradigm in object detection frameworks to perform multi- scale detection. However, each scale is treated equally during training. In this paper, we carefully study the objective imbalance of multi-scale detector training. We argue that the loss in each scale level is neither equally important nor independent. Different from the existing solutions of setting multi-task weights, we dynamically optimize the loss weight of each scale level in the training process. Specifically, we propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance. Then we develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training. The proposed dynamic methods make better utilization of multi-scale training loss without extra computational complexity and learnable parameters for backpropagation. Experiments show that our approaches can consistently boost the performance over various baseline detectors on Pascal VOC and MS COCO benchmark.
Memory disaggregation has attracted great attention recently because of its benefits in efficient memory utilization and ease of management. So far, memory disaggregation research has all taken one of two approaches, building/emulating memory nodes w ith either regular servers or raw memory devices with no processing power. The former incurs higher monetary cost and face tail latency and scalability limitations, while the latter introduce performance, security, and management problems. Server-based memory nodes and memory nodes with no processing power are two extreme approaches. We seek a sweet spot in the middle by proposing a hardware-based memory disaggregation solution that has the right amount of processing power at memory nodes. Furthermore, we take a clean-slate approach by starting from the requirements of memory disaggregation and designing a memory-disaggregation-native system. We propose a hardware-based disaggregated memory system, Clio, that virtualizes and manages disaggregated memory at the memory node. Clio includes a new hardware-based virtual memory system, a customized network system, and a framework for computation offloading. In building Clio, we not only co-design OS functionalities, hardware architecture, and the network system, but also co-design the compute node and memory node. We prototyped Clios memory node with FPGA and implemented its client-node functionalities in a user-space library. Clio achieves 100 Gbps throughput and an end-to-end latency of 2.5 us at median and 3.2 us at the 99th percentile. Clio scales much better and has orders of magnitude lower tail latency than RDMA, and it has 1.1x to 3.4x energy saving compared to CPU-based and SmartNIC-based disaggregated memory systems and is 2.7x faster than software-based SmartNIC solutions.
313 - Long Chen , Hao Luo 2021
We present a unified convergence analysis for first order convex optimization methods using the concept of strong Lyapunov conditions. Combining this with suitable time scaling factors, we are able to handle both convex and strong convex cases, and e stablish contraction properties of Lyapunov functions for many existing ordinary differential equation models. Then we derive prevailing first order optimization algorithms, such as proximal gradient methods, heavy ball methods (also known as momentum methods), Nesterov accelerated gradient methods, and accelerated proximal gradient methods from numerical discretizations of corresponding dynamical systems. We also apply strong Lyapunov conditions to the discrete level and provide a more systematical analysis framework. Another contribution is a novel second order dynamical system called Hessian-driven Nesterov accelerated gradient flow which can be used to design and analyze accelerated first order methods for smooth and non-smooth convex optimizations.
154 - Xuhao Luo , Yueqiang Hu , Xin Li 2021
Replacing electrons with photons is a compelling route towards light-speed, highly parallel, and low-power artificial intelligence computing. Recently, all-optical diffractive neural deep neural networks have been demonstrated. However, the existing architectures often comprise bulky components and, most critically, they cannot mimic the human brain for multitasking. Here, we demonstrate a multi-skilled diffractive neural network based on a metasurface device, which can perform on-chip multi-channel sensing and multitasking at the speed of light in the visible. The metasurface is integrated with a complementary metal oxide semiconductor imaging sensor. Polarization multiplexing scheme of the subwavelength nanostructures are applied to construct a multi-channel classifier framework for simultaneous recognition of digital and fashionable items. The areal density of the artificial neurons can reach up to 6.25x106/mm2 multiplied by the number of channels. Our platform provides an integrated solution with all-optical on-chip sensing and computing for applications in machine vision, autonomous driving, and precision medicine.
169 - Wei Li , Dezhao Luo , Bo Fang 2021
Most of the existing video self-supervised methods mainly leverage temporal signals of videos, ignoring that the semantics of moving objects and environmental information are all critical for video-related tasks. In this paper, we propose a novel sel f-supervised method for video representation learning, referred to as Video 3D Sampling (V3S). In order to sufficiently utilize the information (spatial and temporal) provided in videos, we pre-process a video from three dimensions (width, height, time). As a result, we can leverage the spatial information (the size of objects), temporal information (the direction and magnitude of motions) as our learning target. In our implementation, we combine the sampling of the three dimensions and propose the scale and projection transformations in space and time respectively. The experimental results show that, when applied to action recognition, video retrieval and action similarity labeling, our approach improves the state-of-the-arts with significant margins.
Recently, the sequence-to-sequence models have made remarkable progress on the task of keyphrase generation (KG) by concatenating multiple keyphrases in a predefined order as a target sequence during training. However, the keyphrases are inherently a n unordered set rather than an ordered sequence. Imposing a predefined order will introduce wrong bias during training, which can highly penalize shifts in the order between keyphrases. In this work, we propose a new training paradigm One2Set without predefining an order to concatenate the keyphrases. To fit this paradigm, we propose a novel model that utilizes a fixed set of learned control codes as conditions to generate a set of keyphrases in parallel. To solve the problem that there is no correspondence between each prediction and target during training, we propose a $K$-step target assignment mechanism via bipartite matching, which greatly increases the diversity and reduces the duplication ratio of generated keyphrases. The experimental results on multiple benchmarks demonstrate that our approach significantly outperforms the state-of-the-art methods.
111 - Hao Luo , Weihua Chen , Xianzhe Xu 2021
This paper introduces our solution for the Track2 in AI City Challenge 2021 (AICITY21). The Track2 is a vehicle re-identification (ReID) task with both the real-world data and synthetic data. We mainly focus on four points, i.e. training data, unsupe rvised domain-adaptive (UDA) training, post-processing, model ensembling in this challenge. (1) Both cropping training data and using synthetic data can help the model learn more discriminative features. (2) Since there is a new scenario in the test set that dose not appear in the training set, UDA methods perform well in the challenge. (3) Post-processing techniques including re-ranking, image-to-track retrieval, inter-camera fusion, etc, significantly improve final performance. (4) We ensemble CNN-based models and transformer-based models which provide different representation diversity. With aforementioned techniques, our method finally achieves 0.7445 mAP score, yielding the first place in the competition. Codes are available at https://github.com/michuanhaohao/AICITY2021_Track2_DMT.
98 - Chong Liu , Yuqi Zhang , Hao Luo 2021
Multi-Target Multi-Camera Tracking has a wide range of applications and is the basis for many advanced inferences and predictions. This paper describes our solution to the Track 3 multi-camera vehicle tracking task in 2021 AI City Challenge (AICITY21 ). This paper proposes a multi-target multi-camera vehicle tracking framework guided by the crossroad zones. The framework includes: (1) Use mature detection and vehicle re-identification models to extract targets and appearance features. (2) Use modified JDETracker (without detection module) to track single-camera vehicles and generate single-camera tracklets. (3) According to the characteristics of the crossroad, the Tracklet Filter Strategy and the Direction Based Temporal Mask are proposed. (4) Propose Sub-clustering in Adjacent Cameras for multi-camera tracklets matching. Through the above techniques, our method obtained an IDF1 score of 0.8095, ranking first on the leaderboard. The code have released: https://github.com/LCFractal/AIC21-MTMC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا