ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-shot detection, namely, localizing both seen and unseen objects, increasingly gains importance for large-scale applications, with large number of object classes, since, collecting sufficient annotated data with ground truth bounding boxes is sim ply not scalable. While vanilla deep neural networks deliver high performance for objects available during training, unseen object detection degrades significantly. At a fundamental level, while vanilla detectors are capable of proposing bounding boxes, which include unseen objects, they are often incapable of assigning high-confidence to unseen objects, due to the inherent precision/recall tradeoffs that requires rejecting background objects. We propose a novel detection algorithm Dont Even Look Once (DELO), that synthesizes visual features for unseen objects and augments existing training algorithms to incorporate unseen object detection. Our proposed scheme is evaluated on Pascal VOC and MSCOCO, and we demonstrate significant improvements in test accuracy over vanilla and other state-of-art zero-shot detectors
In computer vision applications, such as domain adaptation (DA), few shot learning (FSL) and zero-shot learning (ZSL), we encounter new objects and environments, for which insufficient examples exist to allow for training models from scratch, and met hods that adapt existing models, trained on the presented training environment, to the new scenario are required. We propose a novel visual attribute encoding method that encodes each image as a low-dimensional probability vector composed of prototypical part-type probabilities. The prototypes are learnt to be representative of all training data. At test-time we utilize this encoding as an input to a classifier. At test-time we freeze the encoder and only learn/adapt the classifier component to limited annotated labels in FSL; new semantic attributes in ZSL. We conduct extensive experiments on benchmark datasets. Our method outperforms state-of-art methods trained for the specific contexts (ZSL, FSL, DA).
We propose a novel Generalized Zero-Shot learning (GZSL) method that is agnostic to both unseen images and unseen semantic vectors during training. Prior works in this context propose to map high-dimensional visual features to the semantic domain, we believe contributes to the semantic gap. To bridge the gap, we propose a novel low-dimensional embedding of visual instances that is visually semantic. Analogous to semantic data that quantifies the existence of an attribute in the presented instance, components of our visual embedding quantifies existence of a prototypical part-type in the presented instance. In parallel, as a thought experiment, we quantify the impact of noisy semantic data by utilizing a novel visual oracle to visually supervise a learner. These factors, namely semantic noise, visual-semantic gap and label noise lead us to propose a new graphical model for inference with pairwise interactions between label, semantic data, and inputs. We tabulate results on a number of benchmark datasets demonstrating significant improvement in accuracy over state-of-the-art under both semantic and visual supervision.
We consider the problem of fine-grained classification on an edge camera device that has limited power. The edge device must sparingly interact with the cloud to minimize communication bits to conserve power, and the cloud upon receiving the edge inp uts returns a classification label. To deal with fine-grained classification, we adopt the perspective of sequential fixation with a foveated field-of-view to model cloud-edge interactions. We propose a novel deep reinforcement learning-based foveation model, DRIFT, that sequentially generates and recognizes mixed-acuity images.Training of DRIFT requires only image-level category labels and encourages fixations to contain task-relevant information, while maintaining data efficiency. Specifically, wetrain a foveation actor network with a novel Deep Deterministic Policy Gradient by Conditioned Critic and Coaching (DDPGC3) algorithm. In addition, we propose to shape the reward to provide informative feedback after each fixation to better guide RL training. We demonstrate the effectiveness of DRIFT on this task by evaluating on five fine-grained classification benchmark datasets, and show that the proposed approach achieves state-of-the-art performance with over 3X reduction in transmitted pixels.
Existing person re-identification (re-id) methods assume the provision of accurately cropped person bounding boxes with minimum background noise, mostly by manually cropping. This is significantly breached in practice when person bounding boxes must be detected automatically given a very large number of images and/or videos processed. Compared to carefully cropped manually, auto-detected bounding boxes are far less accurate with random amount of background clutter which can degrade notably person re-id matching accuracy. In this work, we develop a joint learning deep model that optimises person re-id attention selection within any auto-detected person bounding boxes by reinforcement learning of background clutter minimisation subject to re-id label pairwise constraints. Specifically, we formulate a novel unified re-id architecture called Identity DiscriminativE Attention reinforcement Learning (IDEAL) to accurately select re-id attention in auto-detected bounding boxes for optimising re-id performance. Our model can improve re-id accuracy comparable to that from exhaustive human manual cropping of bounding boxes with additional advantages from identity discriminative attention selection that specially benefits re-id tasks beyond human knowledge. Extensive comparative evaluations demonstrate the re-id advantages of the proposed IDEAL model over a wide range of state-of-the-art re-id methods on two auto-detected re-id benchmarks CUHK03 and Market-1501.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا