ترغب بنشر مسار تعليمي؟ اضغط هنا

The astronomy community has made clear our shared scientific vision in the Astro2010 decadal survey. Who will build this future? The cost and scarcity of telescope resources makes vital learning through doing extremely difficult for students and earl y career researchers. What is needed now and in the future to provide a depth of knowledge, creativity, and experience in our field? At McDonald Observatory we have a clear model in answer to that question, and a long history of successfully training the next generation of instrument builders and observers. We must support and sustain small to medium range local resources such as McDonald to foster the successful growth of our field.
273 - Hanshin Lee 2014
The shape of a focus-modulated point spread function (PSF) is used as a quick visual assessment tool of aberration modes in the PSF. Further analysis in terms of shape moments can permit quantifying the modal coefficients with an accuracy comparable to that of typical wavefront sensors. In this letter, the error of the moment-based wavefront sensing is analytically described in terms of the pixelation and photon/readout noise. All components highly depend on the (unknown) PSF shape, but can be estimated from the measured PSF sampled at a reasonable spatial resolution and photon count. Numerical simulations verified that the models consistently predicted the behavior of the modal estimation error of the moment-based wavefront sensing.
The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET). Based on the design of the Visible Integral-field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument f or carrying out the HET Dark Energy Experiment (HETDEX), LRS2 provides integral field spectroscopy for a seeing-limited field of 12 x 6 arcseconds. For LRS2, the replicable design of VIRUS has been leveraged to gain broad wavelength coverage from 370 nm to 1 micron, spread between two fiber-fed dual-channel spectrographs, each of which can operate as an independent instrument. The blue spectrograph, LRS2-B, covers 370-470 nm and 460-700 nm at fixed resolving powers of ~1900 and ~1100, respectively, while the red spectrograph, LRS2-R, covers 650-842 nm and 818-1050 nm with both of its channels having a resolving power of ~1800. In this paper, we present a detailed description of the instruments design in which we focus on the departures from the basic VIRUS framework. The primary modifications include the fore-optics that are used to feed the fiber integral field units at unity fill-factor, the cameras correcting optics and detectors, and the volume phase holographic grisms. We also present a model of the instruments sensitivity and a description of specific science cases that have driven the design of LRS2, including systematically studying the spatially resolved properties of extended Lyman-alpha blobs at 2 < z < 3. LRS2 will provide a powerful spectroscopic follow-up platform for large surveys such as HETDEX.
The upcoming Wide-Field Upgrade (WFU) has ushered in a new era of instrumentation for the Hobby-Eberly Telescope (HET). Here, we present the design, construction progress, and lab tests completed to date of the blue-optimized second generation Low Re solution Spectrograph (LRS2-B). LRS2-B is a dual-channel, fiber fed instrument that is based on the design of the Visible Integral Field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy eXperiment (HETDEX). LRS2-B utilizes a microlens-coupled integral field unit (IFU) that covers a 7x12 area on the sky having unity fill-factor with ~300 spatial elements that subsample the median HET image quality. The fiber feed assembly includes an optimized dichroic beam splitter that allows LRS2-B to simultaneously observe 370 nm to 470 nm and 460 nm to 700 nm at fixed resolving powers of R approx 1900 and 1200, respectively. We discuss the departures from the nominal VIRUS design, which includes the IFU, fiber feed, camera correcting optics, and volume phase holographic grisms. Additionally, the motivation for the selection of the wavelength coverage and spectral resolution of the two channels is briefly discussed. One such motivation is the follow-up study of spectrally and (or) spatially resolved Lyman-alpha emission from z ~ 2.5 star-forming galaxies in the HETDEX survey. LRS2-B is planned to be a commissioning instrument for the HET WFU and should be on-sky during quarter 4 of 2013. Finally, we mention the current state of LRS2-R, the red optimized sister instrument of LRS2-B.
155 - Hanshin Lee 2012
A new concept of using focus-diverse point spread functions (PSFs) for modal wavefront sensing (WFS) is explored. This is based on relatively straightforward image moment analysis of measured PSFs, which differentiates it from other focal-plane wavef ront sensing techniques (FPWFS). The presented geometric analysis shows that the image moments are non-linear functions of wave aberration coefficients, but notes that focus-diversity (FD) essentially decouples the coefficients of interest from others, resulting in a set of linear equations whose solution corresponds to modal coefficient estimates. The presented proof-of-concept simulations suggest the potential of the concept in WFS with strongly aberrated high SNR objects in particular.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا