ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate the homotopy type of the Brown-Comenetz dual $I_2$ of the K(2)-local sphere at the prime 3 and show that there is a twisting by a non-trivial element $P$ in the exotic part of the Picard group. We give a complete characterization of $P$ as well. The main technique is to give a sequence of calculations of the homotopy groups of elements of the Picard group after smashing with the Smith-Toda complex V(1).
We give a calculation of Picard groups of K(2)-local invertible spectra and of E(2)-local invertible spectra, both at the prime 3. The main contribution of this paper is to calculation the subgroup of invertible spectra with the same Morava module as a sphere.
We calculate the rational homotopy and the K(1)-local homotopy of the K(2)-local sphere at the prime 3 and level 2. We use this to verify the chromatic splitting conjecture in this case.
We study the mod-p cohomology of the group Out(F_n) of outer automorphisms of the free group F_n in the case n=2(p-1) which is the smallest n for which the p-rank of this group is 2. For p=3 we give a complete computation, at least above the virtual cohomological dimension of Out(F_4) (which is 5). More precisley, we calculate the equivariant cohomology of the p-singular part of outer space for p=3. For a general prime p>3 we give a recursive description in terms of the mod-p cohomology of Aut(F_k) for k less or equal to p-1. In this case we use the Out(F_{2(p-1)})-equivariant cohomology of the poset of elementary abelian p-subgroups of Out(F_n).
In this paper we use the approach introduced in an earlier paper by Goerss, Henn, Mahowald and Rezk in order to analyze the homotopy groups of L_{K(2)}V(0), the mod-3 Moore spectrum V(0) localized with respect to Morava K-theory K(2). These homotopy groups have already been calculated by Shimomura. The results are very complicated so that an independent verification via an alternative approach is of interest. In fact, we end up with a result which is more precise and also differs in some of its details from that of Shimomura. An additional bonus of our approach is that it breaks up the result into smaller and more digestible chunks which are related to the K(2)-localization of the spectrum TMF of topological modular forms and related spectra. Even more, the Adams-Novikov differentials for L_{K(2)}V(0) can be read off from those for TMF.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا