ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the impact of binary interaction processes on the evolution of low- and intermediate-mass stars using long-term monitoring of their radial velocity. Here we report on our results on the central stars of two planetary nebulae (PNe): the wel l-studied spectrophotometric standard BD+33.2642 (central star of PNG 052.7+50.7) and HD112313 (central star of PN LoTr5), the optical light of which is dominated by a rapidly rotating G star. The high-resolution spectra were cross-correlated with carefully selected masks of spectral lines. The individual masks were optimised for the spectral signatures of the dominant contributor of the optical light. We report on the first detection of orbital motion in these two objects. For BD+33.2642 we sampled 1.5 cycles of the 1105 +/- 24 day orbital period. For HD 112313 a full period is not yet covered, despite our 1807 days of monitoring. The radial-velocity amplitude shows that it is unlikely that the orbital plane is co-planar with the one defined by the nebular waist of the bipolar nebula. To our knowledge these are the first detections of orbits in PNe that are in a range from several weeks to a few years. The orbital properties and chemical composition of BD+33.2642 are similar to what is found in post-AGB binaries with circumbinary discs. The latter are probably progenitors of these PNe. For LoTr5 the Ba-rich central star and the long orbital period are similar to the Ba star giants, which hence serve as natural progeny. In contrast to the central star in LoTr5, normal Ba stars are slow rotators. The orbits of these systems have a low probability of occurrence according to recent population synthesis calculations.
We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We dep loy a multi-wavelength study which includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H]=-4.2, we discovered that IRAS11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. We conclude that IRAS11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close the the orbital plane making that the optical light is dominated by scattered light. IRAS11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV,Tauri stars to the non-pulsating class of strongly depleted objects.
60 - Hans Van Winckel 2011
Post-AGB stars evolve on a very fast track and hence not many are known. Their spectral properties make them, in principle, ideal objects to test our theories on the late phases of stellar evolution. This has, however, proven much more difficult than anticipated, mainly because the morphological, dynamical and chemical diversity in Galactic post-AGB stars is very large indeed. Here I focus on recent results and touch upon the bright near future of post-AGB research.
While the first binary post-AGB stars were serendipitously discovered, the distinct characteristics of their Spectral Energy Distribution (SED) allowed us to launch a more systematic search for binaries. We selected post-AGB objects which show a broa d dust excess often starting already at H or K, pointing to the presence of a gravitationally bound dusty disc in the system. We started a very extensive multi-wavelength study of those systems and here we report on our radial velocity and photometric monitoring results for six stars of early F type, which are pulsators of small amplitude. To determine the radial velocity of low signal-to-noise time-series, we constructed dedicated auto-correlation masks. The radial velocity variations were subjected to detailed analysis to differentiate between pulsational variability and variability due to orbital motion. Finally orbital minimalisation was performed to constrain the orbital elements. All of the six objects are binaries, with orbital periods ranging from 120 to 1800 days. Five systems have non-circular orbits. The mass functions range from 0.004 to 0.57 solar mass and the companions are likely unevolved objects of (very) low initial mass. We argue that these binaries must have been subject to severe binary interaction when the primary was a cool supergiant. Although the origin of the circumstellar disc is not well understood, the disc is generally believed to be formed during this strong interaction phase. The eccentric orbits of these highly evolved objects remain poorly understood. With the measured orbits and mass functions we conclude that the circumbinary discs seem to have a major impact on the evolution of a significant fraction of binary systems.
The metal-poor post-AGB star HD 46703 is shown to be a single-line spectroscopic binary with a period of 600 days, a high velocity of -94 km/s, and an orbital eccentricity of 0.3. Light curve studies show that it also pulsates with a period of 29 day s. High-resolution, high signal-to-noise spectra were used for a new abundance study. The atmospheric model determined is T(eff) = 6250 K, log(g) = 1.0, V(t) = 3.0 km/s, and a metal abundance of [M/H] = -1.5. A low carbon abundance and lack of s-process element enhancement indicate that the star has not experienced third dredge-up on the AGB. The sulfur and zinc abundances are high compared with iron, and the chemical abundances show a clear anti-correlation with condensation temperature. The abundance depletion pattern is similar to that seen in other post-AGB binaries, and, like them, is attributed to the chemical fractionation of refractory elements onto dust stored in a circumbinary disk and the re-accretion of volatiles in the stellar atmosphere. The infrared excess is small but the excess energy distribution is very similar to what can expected from a disk. HD 46703 joins the growing list of depleted, post-AGB stars which are likely surrounded by a dusty and stable circumbinary disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا