ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from the evolution of spacetimes that describe the merger of asymptotically global AdS black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on th e initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring-down. The boundary stress tensor of the dual CFT is conformally related to a stress tensor in Minkowski space which inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times.
Motivated by the gauge/gravity duality, we introduce a numerical scheme based on generalized harmonic evolution to solve the Einstein field equations on asymptotically anti-de Sitter (AdS) spacetimes. We work in global AdS5, which can be described by the (t,r,chi,theta,phi) spherical coordinates adapted to the R{times}S3 boundary. We focus on solutions that preserve an SO(3) symmetry that acts to rotate the 2-spheres parametrized by theta,phi. In the boundary conformal field theory (CFT), the way in which this symmetry manifests itself hinges on the way we choose to embed Minkowski space in R{times}S3. We present results from an ongoing study of prompt black hole formation via scalar field collapse, and explore the subsequent quasi-normal ringdown. Beginning with initial data characterized by highly distorted apparent horizon geometries, the metrics quickly evolve, via quasi-normal ringdown, to equilibrium static black hole solutions at late times. The lowest angular number quasi-normal modes are consistent with the linear modes previously found in perturbative studies, whereas the higher angular modes are a combination of linear modes and of harmonics arising from non-linear mode-coupling. We extract the stress energy tensor of the dual CFT on the boundary, and find that despite being highly inhomogeneous initially, it nevertheless evolves from the outset in a manner that is consistent with a thermalized N=4 SYM fluid. As a first step towards closer contact with relativistic heavy ion collision physics, we map this solution to a Minkowski piece of the R{times}S3 boundary, and obtain a corresponding fluid flow in Minkowski space.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا