ترغب بنشر مسار تعليمي؟ اضغط هنا

We study how feedback influences baryon infall onto galaxies using cosmological, zoom-in simulations of haloes with present mass $M_{vir}=6.9times10^{11} M_{odot}$ to $1.7times10^{12} M_{odot}$. Starting at z=4 from identical initial conditions, impl ementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because 50% of the stars form in situ from recycled disc gas with angular momentum only weakly related to that of the z=0 dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because 25-30% of the total accreted gas is ejected entirely before z~1, removing primarily low angular momentum material which enriches the nearby inter-galactic medium. Most recycled gas roughly conserves its angular momentum, but material ejected for long times and to large radii can gain significant angular momentum before re-accretion. These processes lower galaxy formation efficiency in addition to promoting disc formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا