ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose and implement a lattice scheme for coherently manipulating atomic spins. Using the vector light shift and a superlattice structure, we demonstrate experimentally the capability on parallel spin addressing in double-wells and square plaquet tes with subwavelength resolution. Quantum coherence of spin manipulations is verified through measuring atom tunneling and spin exchange dynamics. Our experiment presents a building block for engineering many-body quantum states in optical lattices for realizing quantum simulation and computation tasks.
Ring exchange is an elementary interaction for modeling unconventional topological matters which hold promise for efficient quantum information processing. We report the observation of four-body ring-exchange interactions and the topological properti es of anyonic excitations within an ultracold atom system. A minimum toric code Hamiltonian in which the ring exchange is the dominant term, was implemented by engineering a Hubbard Hamiltonian that describes atomic spins in disconnected plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical evolutions in the spin orders, matching well with the predicted energy gaps between two anyonic excitations of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase $1.00(3)pi$ in the four-spin state was observed, confirming $frac{1}{2}$-anynoic statistics. This work represents an essential step towards studying topological matters with many-body systems and the applications in quantum computation and simulation.
Ultracold atoms in optical lattices offer a great promise to generate entangled states for scalable quantum information processing owing to the inherited long coherence time and controllability over a large number of particles. We report on the gener ation, manipulation and detection of atomic spin entanglement in an optical superlattice. Employing a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated by microwave pulses with near unitary fidelities. Spin entanglement of the two atoms in the double wells of the superlattice is generated via dynamical evolution governed by spin superexchange. By observing collisional atom loss with in-situ absorption imaging we measure spin correlations of atoms inside the double wells and obtain the lower boundary of entanglement fidelity as $0.79pm0.06$, and the violation of a Bells inequality with $S=2.21pm 0.08$. The above results represent an essential step towards scalable quantum computation with ultracold atoms in optical lattices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا