ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on two instabilities called viscous fountain and viscous entrainment triggered at the interface between two liquids by the action of bulk flows driven by a laser beam. These streaming flows are due to light scattering losses in turbid liqui ds, and can be directed either toward or forward the interface. We experimentally and numerically investigate these interface instabilities and show that the height and curvature of the interface deformation at the threshold and the jet radius after interface destabilization mainly depend on the waist of the laser beam. Analogies and differences between these two instabilities are characterized.
We unveil the generation of universal morphologies of fluid interfaces by radiation pressure whatever is the nature of the wave, acoustic or optical. Experimental observations reveal interface deformations endowed with step-like features that are sho wn to result from the interplay between the wave propagation and the shape of the interface. The results are supported by numerical simulations and a quantitative interpretation based on the waveguiding properties of the field is provided.
67 - Hamza Chraibi 2012
The deformation of a fluid-fluid interface due to the thermocapillary stress induced by a continuous Gaussian laser wave is investigated analytically. We show that the direction of deformation of the liquid interface strongly depends on the viscositi es and the thicknesses of the involved liquid layers. We first investigate the case of an interface separating two different liquid layers while a second part is dedicated to a thin film squeezed by two external layers of same liquid. These results are predictive for applications fields where localized thermocapillary stresses are used to produce flows or to deform interfaces in presence of confinement, such as optofluidics.
138 - Hamza Chraibi 2011
We study flows and interface deformations produced by the scattering of a laser beam propagating through non-absorbing turbid fluids. Light scattering produces a force density resulting from the transfer of linear momentum from the laser to the scatt erers. The flow induced in the direction of the beam propagation, called optical streaming, is also able to deform the interface separating the two liquid phases and to produce wide humps. The viscous flow taking place in these two liquid layers is solved analytically, in one of the two liquid layers with a stream function formulation, as well as numerically in both fluids using a boundary integral element method. Quantitative comparisons are shown between the numerical and analytical flow patterns. Moreover, we present predictive simulations regarding the effects of the geometry, of the scattering strength and of the viscosities, on both the flow pattern and the deformation of the interface. Finally, theoretical arguments are put forth to explain the robustness of the emergence of secondary flows in a two-layer fluid system.
103 - Hamza Chraibi 2010
Recent experimental developments showed that the use of the radiation pressure, induced by a continuous laser wave, to control fluid-fluid interface deformations at the microscale, represents a very promising alternative to electric or magnetic actua tion. In this article, we solve numerically the dynamics and steady state of the fluid interface under the effects of buoyancy, capillarity, optical radiation pressure and viscous stress. A precise quantitative validation is shown by comparison with experimental data. New results due to the nonlinear dependence of the optical pressure on the angle of incidence are presented, showing different morphologies of the deformed interface going from needle-like to finger-like shapes, depending on the refractive index contrast. In the transient regime, we show that the viscosity ratio influences the time taken for the deformation to reach steady state.
59 - Hamza Chraibi 2009
Water management is a key factor that limits PEFCs performance. We show how insights into this problem can be gained from pore-scale simulations of water invasion in a model fibrous medium. We explore the influence of contact angle on the water invas ion pattern and water saturation at breakthrough and show that a dramatic change in the invasion pattern, from fractal to compact, occurs as the system changes from hydrophobic to hydrophilic. Then, we explore the case of a system of mixed wettability, i.e. containing both hydrophilic and hydrophobic pores. The saturation at breakthrough is studied as a function of the fraction of hydrophilic pores. The results are discussed in relation with the water management problem, the optimal design of a GDL and the fuel cell performance degradation mechanisms. We outline how the study could be extended to 3D systems, notably from binarised images of GDLs obtained by X ray microtomography.
155 - Hamza Chraibi 2009
We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semi-angle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these optical cones become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable optical torus. These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated optical domain and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale.
166 - Hamza Chraibi 2009
We study numerically the influence of contact angle on slow evaporation in two-dimensional model porous media. For sufficiently low contact angles, the drying pattern is fractal and can be predicted by a simple model combining the invasion percolatio n model with the computation of the diffusive transport in the gas phase. The overall drying time is minimum in this regime and is independent of contact angle over a large range of contact angles up to the beginning of a transition zone. As the contact angle increases in the transition region, the cooperative smoothing mechanisms of the interface become important and the width of the liquid gas interface fingers that form during the evaporation process increases. The mean overall drying time increases in the transition region up to an upper bound which is reached at a critical contact angle Theta_c. The increase in the drying time in the transition region is explained in relation with the diffusional screening phenomenon associated with the Laplace equation governing the vapor transport in the gas phase. Above Theta_c the drying pattern is character- ized by a flat traveling front and the mean overall drying time becomes independent of the contact angle. Drying time fluctuations are studied and are found to be important below Theta_c, i.e., when the pattern is fractal. The fluctuations are of the same order of magnitude regardless of the value of contact angle in this range. The fluctuations are found to die out abruptly at Theta_c as the liquid gas interface becomes a flat front.
85 - Hamza Chraibi 2009
Deformations of liquid interfaces by the optical radiation pressure of a focused laser wave were generally expected to display similar behavior, whatever the direction of propagation of the incident beam. Recent experiments showed that the invariance of interface deformations with respect to the direction of propagation of the incident wave is broken at high laser intensities. In the case of a beam propagating from the liquid of smaller refractive index to that of larger one, the interface remains stable, forming a nipple-like shape, while for the opposite direction of propagation, an instability occurs, leading to a long needle-like deformation emitting micro-droplets. While an analytical model successfully predicts the equilibrium shape of weakly deformed interface, very few work has been accomplished in the regime of large interface deformations. In this work, we use the Boundary Integral Element Method (BIEM) to compute the evolution of the shape of a fluid-fluid interface under the effect of a continuous laser wave, and we compare our numerical simulations to experimental data in the regime of large deformations for both upward and downward beam propagation. We confirm the invariance breakdown observed experimentally and find good agreement between predicted and experimental interface hump heights below the instability threshold.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا