ترغب بنشر مسار تعليمي؟ اضغط هنا

The number of smartphones, tablets, sensors, and connected wearable devices are rapidly increasing. Today, in many parts of the globe, the penetration of mobile computers has overtaken the number of traditional personal computers. This trend and the always-on nature of these devices have resulted in increasing concerns over the intrusive nature of these devices and the privacy risks that they impose on users or those associated with them. In this paper, we survey the current state of the art on mobile computing research, focusing on privacy risks and data leakage effects. We then discuss a number of methods, recommendations, and ongoing research in limiting the privacy leakages and associated risks by mobile computing.
The increasing generation and collection of personal data has created a complex ecosystem, often collaborative but sometimes combative, around companies and individuals engaging in the use of these data. We propose that the interactions between these agents warrants a new topic of study: Human-Data Interaction (HDI). In this paper we discuss how HDI sits at the intersection of various disciplines, including computer science, statistics, sociology, psychology and behavioural economics. We expose the challenges that HDI raises, organised into three core themes of legibility, agency and negotiability, and we present the HDI agenda to open up a dialogue amongst interested parties in the personal and big data ecosystems.
Recent measurement studies show that there are massively distributed hosting and computing infrastructures deployed in the Internet. Such infrastructures include large data centers and organizations computing clusters. When idle, these resources can readily serve local users. Such users can be smartphone or tablet users wishing to access services such as remote desktop or CPU/bandwidth intensive activities. Particularly, when they are likely to have high latency to access, or may have no access at all to, centralized cloud providers. Today, however, there is no global marketplace where sellers and buyers of available resources can trade. The recently introduced marketplaces of Amazon and other cloud infrastructures are limited by the network footprint of their own infrastructures and availability of such services in the target country and region. In this article we discuss the potentials for a federated cloud marketplace where sellers and buyers of a number of resources, including storage, computing, and network bandwidth, can freely trade. This ecosystem can be regulated through brokers who act as service level monitors and auctioneers. We conclude by discussing the challenges and opportunities in this space.
Many researchers have hypothesised models which explain the evolution of the topology of a target network. The framework described in this paper gives the likelihood that the target network arose from the hypothesised model. This allows rival hypothe sised models to be compared for their ability to explain the target network. A null model (of random evolution) is proposed as a baseline for comparison. The framework also considers models made from linear combinations of model components. A method is given for the automatic optimisation of component weights. The framework is tested on simulated networks with known parameters and also on real data.
A problem which has recently attracted research attention is that of estimating the distribution of flow sizes in internet traffic. On high traffic links it is sometimes impossible to record every packet. Researchers have approached the problem of es timating flow lengths from sampled packet data in two separate ways. Firstly, different sampling methodologies can be tried to more accurately measure the desired system parameters. One such method is the sample-and-hold method where, if a packet is sampled, all subsequent packets in that flow are sampled. Secondly, statistical methods can be used to ``invert the sampled data and produce an estimate of flow lengths from a sample. In this paper we propose, implement and test two variants on the sample-and-hold method. In addition we show how the sample-and-hold method can be inverted to get an estimation of the genuine distribution of flow sizes. Experiments are carried out on real network traces to compare standard packet sampling with three variants of sample-and-hold. The methods are compared for their ability to reconstruct the genuine distribution of flow sizes in the traffic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا