ترغب بنشر مسار تعليمي؟ اضغط هنا

Future radial velocity, astrometric, and direct-imaging surveys will find nearby Earth-sized planets within the habitable zone in the near future. How can we search for water and oxygen in those nontransiting planets? We show that a combination of hi gh-dispersion spectroscopic and coronagraphic techniques is a promising technique to detect molecular lines imprinted in the scattered light of Earth-like planets (ELPs). In this method, the planetary signals are spectroscopically separated from telluric absorption by using the Doppler shift. Assuming a long observing campaign (a 10-day exposure) using a high-dispersion spectrometer (R=50,000) with speckle suppression on a 30-m telescope, we simulate the spectra from ELPs around M dwarfs (whose stellar effective temperature is 2750-3750 K) at 5 pc. Performing a cross-correlation analysis with the spectral template of the molecular lines, we find that raw contrasts of $10^{-4}$ and $10^{-5}$ (using Y, J, and H bands) are required to detect water vapor at the 3 $sigma$ and 16 $sigma$ levels, respectively, for $T_star$=3000 K. The raw contrast of $10^{-5}$ is required for a 6 $sigma$ detection of the oxygen 1.27 $mu$m band. We also examine possible systematics, incomplete speckle subtraction, and the correction for telluric lines. When those are not perfect, a telluric water signal appears in the cross-correlation function. However, we find the planetary signal is separated from that resulting from the velocity difference. We also find that the intrinsic water lines in the Phoenix spectra are too weak to affect the results for water detection. We conclude that a combination of high-dispersion spectroscopy and high-contrast instruments can be a powerful means to characterize ELPs in the extremely large telescope era.
We propose the application of coronagraphic techniques to the spectroscopic direct detection of exoplanets via the Doppler shift of planetary molecular lines. Even for an unresolved close-in planetary system, we show that the combination of a visible nuller and an extreme adaptive optics system can reduce the photon noise of a main star and increase the total signal-to-noise ratio (S/N) of the molecular absorption of the exoplanetary atmosphere: it works as a spectroscopic coronagraph. Assuming a 30 m telescope, we demonstrate the benefit of these high-contrast instruments for nearby close-in planets that mimic 55 Cnc b ($0.6 lambda/D$ of the angular separation in the K band). We find that the tip-tilt error is the most crucial factor; however, low-order speckles also contribute to the noise. Assuming relatively conservative estimates for future wavefront control techniques, the spectroscopic coronagraph can increase the contrast to $ sim 50-130 $ times and enable us to obtain $sim 3-6 $ times larger S/N for warm Jupiters and Neptunes at 10 pc those without it. If the tip-tilt error can be reduced to $lesssim 0.3$ mas (rms), it gains $sim 10-30$ times larger S/N and enables us to detect warm super-Earths with an extremely large telescope. This paper demonstrates the concept of spectroscopic coronagraphy for future spectroscopic direct detection. Further studies of the selection of coronagraphs and tip-tilt sensors will extend the range of application of the spectroscopic direct detection beyond the photon collecting area limit.
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal distribution. In order to test the lognormal nature of the ICM directly against X-ray obser vations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the density fluctuations and the X-ray surface brightness. We analyze chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of two from their X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three dimensional inhomogeneity in galaxy clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا