ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a signature of the quantum nature of gravity is the quantum mechanical squeezing of the differential motion of two identical masses with respect to their common mode. This is because the gravitational interaction depends solely on the re lative position of the two masses. In principle, this squeezing is equivalent to quantum entanglement between the masses. In practice, detecting the squeezing is more feasible than detecting the entanglement. To that end, we propose an optical interferometric scheme to falsify hypothetical models of gravity.
Quantum noise limits the sensitivity of laser interferometric gravitational-wave detectors. Given the state-of-the-art optics, the optical losses define the lower bound of the best possible quantum-limited detector sensitivity. In this work, we come up with a broadband signal recycling scheme which gives potential solution to approaching this lower bound by converting the signal recycling cavity to be a broadband signal amplifier using an active optomechanical filter. We will show the difference and advantage of such a scheme compared with the previous white light cavity scheme using the optomechanical filter in [Phys.Rev.Lett.115.211104 (2015)]. The drawback is that the new scheme is more susceptible to the thermal noise of the mechanical oscillator.
The binary neutron star coalescence GW170817 was observed by gravitational wave detectors during the inspiral phase but sensitivity in the 1-5 kHz band was insufficient to observe the expected nuclear matter signature of the merger itself, and the pr ocess of black hole formation. This provides strong motivation for improving 1--5 kHz sensitivity which is currently limited by photon shot noise. Resonant enhancement by signal recycling normally improves the signal to noise ratio at the expense of bandwidth. The concept of optomechanical white light signal recycling (WLSR) has been proposed, but all schemes to date have been reliant on the development of suitable ultra-low mechanical loss components. Here for the first time we show demonstrated optomechanical resonator structures that meet the loss requirements for a WLSR interferometer with strain sensitivity below 10$^{-24}$ Hz$^{-1/2}$ at a few kHz. Experimental data for two resonators are combined with analytic models of 4km interferometers similar to LIGO, to demonstrate sensitivity enhancement across a much broader band of neutron star coalescence frequencies than dual-recycled Fabry-Perot Michelson detectors of the same length. One candidate resonator is a silicon nitride membrane acoustically isolated from the environment by a phononic crystal. The other is a single-crystal quartz lens that supports bulk acoustic longitudinal waves. Optical power requirements could prefer the membrane resonator, although the bulk acoustic wave resonator gives somewhat better thermal noise performance. Both could be implemented as add-on components to existing detectors.
The design of a complex instrument such as Einstein Telescope (ET) is based on a target sensitivity derived from an elaborate case for scientific exploration. At the same time it incorporates many trade-off decisions to maximise the scientific value by balancing the performance of the various subsystems against the cost of the installation and operation. In this paper we discuss the impact of a long signal recycling cavity (SRC) on the quantum noise performance. We show the reduction in sensitivity due to a long SRC for an ET high-frequency interferometer, provide details on possible compensations schemes and suggest a reduction of the SRC length. We also recall details of the trade-off between the length and optical losses for filter cavities, and show the strict requirements for an ET low-frequency interferometer. Finally, we present an alternative filter cavity design for an ET low-frequency interferometer making use of a coupled cavity, and discuss the advantages of the design in this context.
Optomechanical interaction can be a platform for converting quantum optical sates at different frequencies. In this work, we propose to combine the idea of optomechanical frequency conversion and the dual-use of laser interferometer, for the purpose of improving the broadband sensitivity of laser interferometer gravitational wave detectors by filtering the light field. We found that compare to the previous schemes of implementing the optomechanical devices in gravitational wave detectors, this frequency converter scheme will have less stringent requirement on the thermal noise dilution.
We propose a new optical configuration for an interferometric gravitational wave detector based on the speedmeter concept using a sloshing cavity. Speedmeters provide an inherently better quantum-noise limited sensitivity at low frequencies than the currently used Michelson interferometers. We show that a practical sloshing cavity can be added relatively simply to an existing dual-recycled Michelson interferometer such as Advanced LIGO.
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significa nt improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article: Quantum measurement theory in gravitational-wave detectors [Living Rev. Relativity 15, 5 (2012)], we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.
Real photon pairs can be created in a dynamic cavity with periodically modulated refractive index of the constituent media or oscillating boundaries. This effect is called Dynamic Casimir effect (DCE), which represents one of the most amazing predict ions of quantum field theory. Here, we investigate DCE in a dynamic one-dimensional photonic crystal system with both temporal and spatial modulation of the refractive index profile. Such a system can resonantly generate photons at driving frequencies equal to even or odd integer times of that of the fundamental cavity mode governed by the symmetry of the spatial modulation. We further observe interesting spectral and scaling behaviors for photons excited at the band edge. Our discovery introduces a new degree of freedom to enhance the efficiency of DCE.
We demonstrate the applicability of the EPR entanglement squeezing scheme for enhancing the shot-noise-limited sensitivity of a detuned dual-recycled Michelson interferometers. In particular, this scheme is applied to the GEO,600 interferometer. The effect of losses throughout the interferometer, arm length asymmetries, and imperfect separation of the signal and idler beams are considered.
In order to expand the astrophysical reach of gravitational wave detectors, several interferometer topologies have been proposed to evade the thermodynamic and quantum mechanical limits in future detectors. In this work, we make a systematic comparis on among them by considering their sensitivities and complexities. We numerically optimize their sensitivities by introducing a cost function that tries to maximize the broadband improvement over the sensitivity of current detectors. We find that frequency-dependent squeezed-light injection with a hundred-meter scale filter cavity yields a good broadband sensitivity, with low complexity, and good robustness against optical loss. This study gives us a guideline for the near-term experimental research programs in enhancing the performance of future gravitational-wave detectors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا