ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - Haitan Xu , Xin Wan 2009
In a topological quantum computer, braids of non-Abelian anyons in a (2+1)-dimensional space-time form quantum gates, whose fault tolerance relies on the topological, rather than geometric, properties of the braids. Here we propose to create and expl oit redundant geometric degrees of freedom to improve the theoretical accuracy of topological single- and two-qubit quantum gates. We demonstrate the power of the idea using explicit constructions in the Fibonacci model. We compare its efficiency with that of the Solovay-Kitaev algorithm and explain its connection to the leakage errors reduction in an earlier construction [Phys. Rev. A 78, 042325 (2008)].
76 - Haitan Xu , Xin Wan 2008
We discuss how to significantly reduce leakage errors in topological quantum computation by introducing an irrelevant error in phase, using the construction of a CNOT gate in the Fibonacci anyon model as a concrete example. To be specific, we constru ct a functional braid in a six-anyon Hilbert space that exchanges two neighboring anyons while conserving the encoded quantum information. The leakage error is $sim$$10^{-10}$ for a braid of $sim$100 interchanges of anyons. Applying the braid greatly reduces the leakage error in the construction of generic controlled-rotation gates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا