ترغب بنشر مسار تعليمي؟ اضغط هنا

As-grown AgF2 has a remarkably similar electronic structure as insulating cuprates, but it is extremely electronegative, which makes it hard to handle and dope. Furthermore, buckling of layers reduces magnetic interactions and enhances unwanted self- trapping lattice effects. We argue that epitaxial engineering can solve all these problems. By using a high throughput approach and first principle computations, we find a set of candidate substrates which can sustain the chemical aggressiveness of AgF2 and at the same time have good lattice parameter matching for heteroepitaxy, enhancing AgF2 magnetic and transport properties and opening the possibility of field-effect carrier injection to achieve a new generation of high-Tc superconductors. Assuming a magnetic mechanism and extrapolating from cuprates we predict that the superconducting critical temperature of a single layer can reach 195 K.
Recent experimental study reveals the optical conductivity of La$_{1-x}$Ca$_x$MnO$_3$ over a wide range of energy and the occurrence of spectral weight transfer as the system transforms from paramagnetic insulating to ferromagnetic metallic phase [Ru sydi {it et al.}, Phys. Rev. B {bf 78}, 125110 (2008)]. We propose a model and calculation within the Dynamical Mean Field Theory to explain this phenomenon. We find the role of oxygens in mediating the hopping of electrons between manganeses as the key that determines the structures of the optical conductivity. In addition, by parametrizing the hopping integrals through magnetization, our result suggests a possible scenario that explains the occurrence of spectral weight transfer, in which the ferromagnatic ordering increases the rate of electron transfer from O$_{2p}$ orbitals to upper Mn$_{e_g}$ orbitals while simultaneously decreasing the rate of electron transfer from O$_{2p}$ orbitals to lower Mn$_{e_g}$orbitals, as temperature is varied across the ferromagnetic transition. With this scenario, our optical conductivity calculation shows very good quantitative agreement with the experimental data.
A major challenge of spintronics is in generating, controlling and detecting spin-polarized current. Manipulation of spin-polarized current, in particular, is difficult. We demonstrate here, based on calculated transport properties of graphene nanori bbons, that nearly +-100% spin-polarized current can be generated in zigzag graphene nanoribbons (ZGNRs) and tuned by a source-drain voltage in the bipolar spin diode, in addition to magnetic configurations of the electrodes. This unusual transport property is attributed to the intrinsic transmission selection rule of the spin subbands near the Fermi level in ZGNRs. The simultaneous control of spin current by the bias voltage and the magnetic configurations of the electrodes provides an opportunity to implement a whole range of spintronics devices. We propose theoretical designs for a complete set of basic spintronic devices, including bipolar spin diode, transistor and logic gates, based on ZGNRs.
Ferroelectric nanostructures can be formed by local switching of domains using techniques such as piezo-force microscopy (PFM). Understanding lateral size effects is important to determine the minimum feature size for writing ferroelectric nanostruct ures. To understand these lateral size effects, we use the time-dependent-Ginzburg-Landau equations to simulate localized switching of domains for a PFM type and parallel-plate capacitor configurations. Our investigations indicate that fringing electric fields lead to switching via 90 deg domain wedge nucleation for thicker films while at smaller thicknesses, the polarization switches directly by 180 deg rotations. The voltage required to switch the domain increases by decreasing the lateral size and at very small lateral sizes the coercive voltage becomes so large that it becomes virtually impossible to switch the domain. In all cases, the width of the switched region extends beyond the electrodes, due to fringing.
73 - Hao Ren , Qunxiang Li , Haibin Su 2007
In this paper, we apply the first-principle theory to explore how the electronic structures of armchair graphene nanoribbons (AGNRs) are affected by chemical modifications. The edge addends include H, F, N, NH$_{2}$, and NO$_{2}$. Our theoretical res ults show that the energy gaps are highly tunable by controlling the widths of AGNRs and addends. The most interesting finding is that N-passivated AGNRs with various widths are metallic due to the unique electronic features of N-N bonds. This property change of AGNRs (from semiconducting to metallic) is important in developing graphene-based devices.
67 - Peng Li , Haibin Su , 2007
The Heisenberg antiferromagnet on the Kagom{e} lattice is studied in the framework of Schwinger-boson mean-field theory. Two solutions with different symmetries are presented. One solution gives a conventional quantum state with $mathbf{q}=0$ order f or all spin values. Another gives a gapped spin liquid state for spin $S=1/2$ and a mixed state with both $mathbf{q}=0$ and $sqrt{3}times sqrt{3}$ orders for spin $S>1/2$. We emphasize that the mixed state exhibits two sets of peaks in the static spin structure factor. And for the case of spin $S=1/2$, the gap value we obtained is consistent with the previous numerical calculations by other means. We also discuss the thermodynamic quantities such as the specific heat and magnetic susceptibility at low temperatures and show that our result is in a good agreement with the Mermin-Wagner theorem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا