ترغب بنشر مسار تعليمي؟ اضغط هنا

Facing the threats of infectious diseases, we take various actions to protect ourselves, but few studies considered an evolving system with competing strategies. In view of that, we propose an evolutionary epidemic model coupled with human behaviors, where individuals have three strategies: vaccination, self-protection and laissez faire, and could adjust their strategies according to their neighbors strategies and payoffs at the beginning of each new season of epidemic spreading. We found a counter-intuitive phenomenon analogous to the well-known emph{Braesss Paradox}, namely a better condition may lead to worse performance. Specifically speaking, increasing the successful rate of self-protection does not necessarily reduce the epidemic size or improve the system payoff. This phenomenon is insensitive to the network topologies, and can be well explained by a mean-field approximation. Our study demonstrates an important fact that a better condition for individuals may yield a worse outcome for the society.
In this Letter, we introduce an aspiration-induced reconnection mechanism into the spatial public goods game. A player will reconnect to a randomly chosen player if its payoff acquired from the group centered on the neighbor does not exceed the aspir ation level. We find that an intermediate aspiration level can best promote cooperation. This optimal phenomenon can be explained by a negative feedback effect, namely, a moderate level of reconnection induced by the intermediate aspiration level induces can change the downfall of cooperators, and then facilitate the fast spreading of cooperation. While insufficient reconnection and excessive reconnection induced by low and high aspiration levels respectively are not conductive to such an effect. Moreover, we find that the intermediate aspiration level can lead to the heterogeneous distribution of degree, which will be beneficial to the evolution of cooperation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا