ترغب بنشر مسار تعليمي؟ اضغط هنا

Let $(V,omega)$ be an orthosympectic $mathbb Z_2$-graded vector space and let $mathfrak g:=mathfrak{gosp}(V,omega)$ denote the Lie superalgebra of similitudes of $(V,omega)$. When the space $mathscr P(V)$ of superpolynomials on $V$ is emph{not} a com pletely reducible $mathfrak g$-module, we construct a natural basis $D_lambda$ of Capelli operators for the algebra of $mathfrak g$-invariant superpolynomial superdifferential operators on $V$, where the index set $mathcal P$ is the set of integer partitions of length at most two. We compute the action of the operators $D_lambda$ on maximal indecomposable components of $mathscr P(V)$ explicitly, in terms of Knop-Sahi interpolation polynomials. Our results show that, unlike the cases where $mathscr P(V)$ is completely reducible, the eigenvalues of a subfamily of the $D_lambda$ are emph{not} given by specializing the Knop-Sahi polynomials. Rather, the formulas for these eigenvalues involve suitably regularized forms of these polynomials. In addition, we demonstrate a close relationship between our eigenvalue formulas for this subfamily of Capelli operators and the Dougall-Ramanujan hypergeometric identity. We also transcend our results on the eigenvalues of Capelli operators to the Deligne category $mathsf{Rep}(O_t)$. More precisely, we define categorical Capelli operators ${mathbf D_{t,lambda}}_{lambdainmathcal P}^{}$ that induce morphisms of indecomposable components of symmetric powers of $mathsf V_t$, where $mathsf V_t$ is the generating object of $mathsf{Rep}(O_t)$. We obtain formulas for the eigenvalue polynomials associated to the $left{mathbf D_{t,lambda}right}_{lambdainmathcal P}$ that are analogous to our results for the operators ${D_lambda}_{lambdainmathcal P}^{}$.
For a finite dimensional unital complex simple Jordan superalgebra $J$, the Tits-Kantor-Koecher construction yields a 3-graded Lie superalgebra $mathfrak g_flatcong mathfrak g_flat(-1)oplusmathfrak g_flat(0)oplusmathfrak g_flat(1)$, such that $mathfr ak g_flat(-1)cong J$. Set $V:=mathfrak g_flat(-1)^*$ and $mathfrak g:=mathfrak g_flat(0)$. In most cases, the space $mathcal P(V)$ of superpolynomials on $V$ is a completely reducible and multiplicity-free representation of $mathfrak g$, with a decomposition $mathcal P(V):=bigoplus_{lambdainOmega}V_lambda$, where $left(V_lambdaright)_{lambdainOmega}$ is a family of irreducible $mathfrak g$-modules parametrized by a set of partitions $Omega$. In these cases, one can define a natural basis $left(D_lambdaright)_{lambdainOmega}$ of Capelli operators for the algebra $mathcal{PD}(V)^{mathfrak g}$. In this paper we complete the solution to the Capelli eigenvalue problem, which is to determine the scalar $c_mu(lambda)$ by which $D_mu$ acts on $V_lambda$. We associate a restricted root system $mathit{Sigma}$ to the symmetric pair $(mathfrak g,mathfrak k)$ that corresponds to $J$, which is either a deformed root system of type $mathsf{A}(m,n)$ or a root system of type $mathsf{Q}(n)$. We prove a necessary and sufficient condition on the structure of $mathit{Sigma}$ for $mathcal{P}(V)$ to be completely reducible and multiplicity-free. When $mathit{Sigma}$ satisfies the latter condition we obtain an explicit formula for the eigenvalue $c_mu(lambda)$, in terms of Sergeev-Veselovs shifted super Jack polynomials when $mathit{Sigma}$ is of type $mathsf{A}(m,n)$, and Okounkov-Ivanovs factorial Schur $Q$-polynomials when $mathit{Sigma}$ is of type $mathsf{Q}(n)$.
We establish a Gelfand-Naimark-Segal construction which yields a correspondence between cyclic unitary representations and positive definite superfunctions of a general class of $mathbb Z_2^n$-graded Lie supergroups.
Let $mathfrak l:= mathfrak q(n)timesmathfrak q(n)$, where $mathfrak q(n)$ denotes the queer Lie superalgebra. The associative superalgebra $V$ of type $Q(n)$ has a left and right action of $mathfrak q(n)$, and hence is equipped with a canonical $math frak l$-module structure. We consider a distinguished basis ${D_lambda}$ of the algebra of $mathfrak l$-invariant super-polynomial differential operators on $V$, which is indexed by strict partitions of length at most $n$. We show that the spectrum of the operator $D_lambda$, when it acts on the algebra $mathscr P(V)$ of super-polynomials on $V$, is given by the factorial Schur $Q$-function of Okounkov and Ivanov. This constitutes a refinement and a new proof of a result of Nazarov, who computed the top-degree homogeneous part of the Harish-Chandra image of $D_lambda$. As a further application, we show that the radial projections of the spherical super-polynomials corresponding to the diagonal symmetric pair $(mathfrak l,mathfrak m)$, where $mathfrak m:=mathfrak q(n)$, of irreducible $mathfrak l$-submodules of $mathscr P(V)$ are the classical Schur $Q$-functions.
Let $Z$ be the symmetric cone of $r times r$ positive definite Hermitian matrices over a real division algebra $mathbb F$. Then $Z$ admits a natural family of invariant differential operators -- the Capelli operators $C_lambda$ -- indexed by partitio ns $lambda$ of length at most $r$, whose eigenvalues are given by specialization of Knop--Sahi interpolation polynomials. In this paper we consider a double fibration $Y longleftarrow X longrightarrow Z$ where $Y$ is the Grassmanian of $r$-dimensional subspaces of $mathbb F^n $ with $n geq 2r$. Using this we construct a family of invariant differential operators $D_{lambda,s}$ on $Y$ that we refer to as quadratic Capelli operators. Our main result shows that the eigenvalues of the $D_{lambda,s}$ are given by specializations of Okounkov interpolation polynomials.
We prove that the local components of an automorphic representation of an adelic semisimple group have equal rank in the sense defined earlier by the second author. Our theorem is an analogue of the results previously obtained by Howe, Li, Dvorsky--S ahi, and Kobayashi--Savin. Unlike previous works which are based on explicit matrix realizations and existence of parabolic subgroups with abelian unipotent radicals, our proof works uniformly for all of the (classical as well as exceptional) groups under consideration. Our result is an extension of the statement known for several semisimple groups that if at least one local component of an automorphic representation is a minimal representation, then all of its local components are minimal.
The essential feature of a root-graded Lie algebra L is the existence of a split semisimple subalgebra g with respect to which L is an integrable module with weights in a possibly non-reduced root system S of the same rank as the root system R of g. Examples include map algebras (maps from an affine scheme to g, S = R), matrix algebras like sl_n(A) for a unital associative algebra A (S = R = A_{n-1}), finite-dimensional isotropic central-simple Lie algebras (S properly contains R in general), and some equivariant map algebras. In this paper we study the category of representations of a root-graded Lie algebra L which are integrable as representations of g and whose weights are bounded by some dominant weight of g. We link this category to the module category of an associative algebra, whose structure we determine for map algebras and sl_n(A). Our results unify previous work of Chari and her collaborators on map algebras and of Seligman on isotropic Lie algebras.
The Capelli problem for the symmetric pairs $(mathfrak{gl}times mathfrak{gl},mathfrak{gl})$ $(mathfrak{gl},mathfrak{o})$, and $(mathfrak{gl},mathfrak{sp})$ is closely related to the theory of Jack polynomials and shifted Jack polynomials for special values of the parameter. In this paper, we extend this connection to the Lie superalgebra setting, namely to the supersymmetric pairs $(mathfrak{g},mathfrak{g}):=(mathfrak{gl}(m|2n),mathfrak{osp}(m|2n))$ and $(mathfrak{gl}(m|n)timesmathfrak{gl}(m|n),mathfrak{gl}(m|n))$, acting on $W:=S^2(mathbb C^{m|2n})$ and $mathbb C^{m|n}otimes(mathbb C^{m|n})^*$. We also give an affirmative answer to the abstract Capelli problem for these cases.
For every finite dimensional Lie supergroup $(G,mathfrak g)$, we define a $C^*$-algebra $mathcal A:=mathcal A(G,mathfrak g)$, and show that there exists a canonical bijective correspondence between unitary representations of $(G,mathfrak g)$ and nond egenerate $*$-representations of $mathcal A$. The proof of existence of such a correspondence relies on a subtle characterization of smoothing operators of unitary representations. For a broad class of Lie supergroups, which includes nilpotent as well as classical simple ones, we prove that the associated $C^*$-algebra is CCR. In particular, we obtain the uniqueness of direct integral decomposition for unitary representations of these Lie supergroups.
A host algebra of a (possibly infinite dimensional) Lie group $G$ is a $C^*$-algebra whose representations are in one-to-one correspondence with certain continuous unitary representations $pi colon G to U(cH)$. In this paper we present a new approach to host algebras for infinite dimensional Lie groups which is based on smoothing operators, i.e., operators whose range is contained in the space $cH^infty$ of smooth vectors. Our first major result is a characterization of smoothing operators $A$ that in particular implies smoothness of the maps $pi^A colon G to B(cH), g mapsto pi(g)A$. The concept of a smoothing operator is particularly powerful for representations $(pi,cH)$ which are semibounded, i.e., there exists an element $x_0 ing$ for which all operators $iddpi(x)$, $x in g$, from the derived representation are uniformly bounded from above in some neighborhood of $x_0$. Our second main result asserts that this implies that $cH^infty$ coincides with the space of smooth vectors for the one-parameter group $pi_{x_0}(t) = pi(exp tx_0)$. We then show that natural types of smoothing operators can be used to obtain host algebras and that, for every metrizable Lie group, the class of semibounded representations can be covered completely by host algebras. In particular, it permits direct integral decompositions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا