ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new high signal-to-noise (S/N) observations of the Diffuse Interstellar Bands (DIBs) in the Local Bubble and its surroundings. We observed 432 sightlines and obtain the equivalent widths of $lambda$5780 and $lambda$5797 AA DIBs up to dis tance of $sim$ 200 pc. All observations have been carried out by using Intermediate Dispersion Spectrograph (IDS) on 2.5 m Isaac Newton Telescope, during three years, to reach a minimum S/N ratio of $sim$ 2000. All $lambda$5780 and $lambda$5797 absorptions are presented in this paper and the observed values of interstellar parameter; $lambda$5780, $lambda$5797, Na I D lines including the uncertainties are tabulated.
We present a new high signal to noise ratio spectroscopic survey of the Northern hemisphere to probe the Local Bubble and its surroundings using the $lambda 5780$ AA and $lambda 5797$ AA Diffuse Interstellar Bands (DIBs). We observed 432 sightlines t o a distance of 200 pc over a duration of 3 years. In this study, we establish the $lambda 5780$ and $lambda 5797$ correlations with Na I, Ca II and E(B-V), for both inside and outside the Local Bubble. The correlations show that among all neutral and ionized atoms, the correlation between Ca II and $lambda5780$ is stronger than its correlation with $lambda5797$, suggesting that $lambda5780$ is more associated with regions where Ca$^{+}$ is more abundant. We study the $lambda5780$ correlation with $lambda5797$, which shows a tight correlation within and outside the Local Bubble. In addition we investigate the DIB properties in UV irradiated and UV shielded regions. We find that, within and beyond the Local Bubble, $lambda5797$ is located in denser parts of clouds, protected from UV irradiation, while $lambda5780$ is located in the low density regions of clouds.
We report on the X-ray and optical observations of galaxy groups selected from the 2dfGRS group catalog, to explore the possibility that galaxy groups hosting a giant elliptical galaxy and a large optical luminosity gap present between the two bright est group galaxies, can be associated with an extended X-ray emission, similar to that observed in fossil galaxy groups. The X-ray observations of 4 galaxy groups were carried out with Chandra telescope with 10-20 ksec exposure time. Combining the X-ray and the optical observations we find evidences for the presence of a diffuse extended X-ray emission beyond the optical size of the brightest group galaxy. Taking both the X-ray and the optical criteria, one of the groups is identified as a fossil group and one is ruled out because of the contamination in the earlier optical selection. For the two remaining systems, the X-ay luminosity threshold is close to the convention know for fossil groups. In all cases the X-ray luminosity is below the expected value from the X-ray selected fossils for a given optical luminosity of the group. A rough estimation for the comoving number density of fossil groups is obtained and found to be in broad agreement with the estimations from observations of X-ray selected fossils and predictions of cosmological simulations.
There have been a number of studies dedicated to identification of fossil galaxy groups, arguably groups with a relatively old formation epoch. Most of such studies identify fossil groups, primarily based on a large luminosity gap, which is the magni tude gap between the two most luminous galaxies in the group. Studies of these types of groups in the millennium cosmological simulations show that, although they have accumulated a significant fraction of their mass, relatively earlier than groups with a small luminosity gap, this parameter alone is not highly efficient in fully discriminating between the old and young galaxy groups, a label assigned based on halo mass accumulation history. We study galaxies drawn from the semi-analytic models of Guo et al. (2011), based on the Millennium Simulation. We establish a set of four observationally measurable parameters which can be used in combination, to identify a subset of galaxy groups which are old, with a very high probability. We thus argue that a sample of fossil groups selected based on luminosity gap will result in a contaminated sample of old galaxy groups. By adding constraints on the luminosity of the brightest galaxy, and its offset from the group luminosity centroid, we can considerably improve the age-dating.
We study the luminosity gap, dm12, between the first and second ranked galaxies in a sample of 59 massive galaxy clusters, using data from the Hale Telescope, HST, Chandra, and Spitzer. We find that the dm12 distribution, p(dm12), is a declining func tion of dm12, to which we fitted a straight line: p(dm12) propto -(0.13+/-0.02)dm12. The fraction of clusters with large luminosity gaps is p(dm12>=1)=0.37+/-0.08, which represents a 3sigma excess over that obtained from Monte Carlo simulations of a Schechter function that matches the mean cluster galaxy luminosity function. We also identify four clusters with extreme luminosity gaps, dm12>=2, giving a fraction of p(dm12>=2)=0.07+0.05-0.03. More generally, large luminosity gap clusters are relatively homogeneous, with elliptical/disky brightest cluster galaxies (BCGs), cuspy gas density profiles (i.e. strong cool cores), high concentrations, and low substructure fractions. In contrast, small luminosity gap clusters are heterogeneous, spanning the full range of boxy/elliptical/disky BCG morphologies, the full range of cool core strengths and dark matter concentrations, and have large substructure fractions. Taken together, these results imply that the amplitude of the luminosity gap is a function of both the formation epoch, and the recent infall history of the cluster. BCG dominance is therefore a phase that a cluster may evolve through, and is not an evolutionary cul-de-sac. We also compare our results with semi-analytic model predictions based on the Millennium Simulation. None of the models are able to reproduce all of the observational results, underlining the inability of current models to match the empirical properties of BCGs. We identify the strength of AGN feedback and the efficiency with which cluster galaxies are replenished after they merge with the BCG in each model as possible causes of these discrepancies. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا