ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - H.Y. He , Y. Zhang , B.C. Pan 2010
Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle pattern s give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.
66 - H.Y. He , B.C. Pan 2009
By employing the first-principles calculations, we investigate electronic properties of a novel carbon nanostructure called a carbon nanobud, in which a $C_{60}$ molecule covalently attaches or embeds in an armchair carbon nanotube. We find that the carbon nanobud exhibits either semiconducting or metallic behavior, depending on the size of the nanotube, as well as the combination mode. Moreover, with respect to the case of the corresponding pristine nanotubes, some new electronic states appear at 0.3-0.8 eV above the Fermi level for the carbon nanobuds with the attaching mode, which agrees well with the experimental reports. In addition, the vibrational properties of the carbon nanobuds are explored. The characteristic Raman active modes for both $C_{60}$ and the corresponding pristine nanotube present in Raman spectra of the carbon nanobuds with attaching modes, consistent with the observations of a recent experiment. In contrast, such situation does not appear for the case of the carbon nanobud with the embedding mode. This indicates that the synthesized carbon nanobuds are probably of the attaching configuration rather than the embedding configuration.
70 - H.Y. He , J. Hu , B.C. Pan 2009
Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO, involving the preference sites, diffusion behaviors, the electronic structures and vibrational properties. We find that a H atom can migrate to the doped Ag to form a Ag-H complex by overcoming energy barriers of 0.3 - 1.0 eV. The lowest-energy site for H location is the bond center of a Ag-O in the basal plane. Moreover, H can migrate between this site and its equivalent sites with energy cost of less than 0.5 eV. In contrast, dissociation of such a Ag-H complex needs energy of about 1.1 - 1.3 eV. This implies that the Ag-H complexes can commonly exist in the Ag-doped ZnO, which have a negative effect on the desirable p-type carrier concentrations of Ag-doped ZnO. In addition, based on the frozen phonon calculation, the vibrational properties of ZnO with a Ag-H complex are predicted. Some new vibrational modes associated with the Ag-H complex present in the vibrational spectrum of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا