ترغب بنشر مسار تعليمي؟ اضغط هنا

53 - H.W. Barz , B. Kampfer , Gy. Wolf 2009
The time evolution of vector-meson spectral-functions is studied within a kinetic theory approach. We implement this formalism in a BUU type transport model. Applications focus on rho and omega mesons being important pieces for the interpretation of the di-electron invariant mass spectrum measured by the HADES collaboration for the reaction C + C at 2 AGeV bombarding energy. Since the evolution of the spectral functions is driven by the local density, the in-medium modifications are tiny for small collision systems within this approach.
Small-angle correlations of pairs of nonidentical light charged particles produced in central collisions of heavy ions in the A=100 mass region at a beam energy of 400 AMeV are investigated with the FOPI detector system at GSI Darmstadt. The differen ce of longitudinal correlation functions with the relative velocity parallel and anti-parallel to the center-of-mass velocity of the pair in the central source frame is studied. This method allows extracting the apparent space-time differences of the emission of the charged particles. Comparing the correlations with results of a final-state interaction model delivers quantitative estimates of these asymmetries. Time delays as short as 1 fm/c or - alternatively - source radius differences of a few tenth fm are resolved. The strong collective expansion of the participant zone introduces not only an apparent reduction of the source radius but also a modification of the emission times. After correcting for both effects a complete sequence of space-time emission points of p, d, t, 3He, alpha particles is presented for the first time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا