ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al. (2012), we make model predictions for the star formation histories (SFHs) of {it central} galaxies in halos of different masses. The model requires the following two key ingredients: (i) mass assembly histories of central and satellite galaxies, and (ii) local observational constraints of the star formation rates of central galaxies as function of halo mass. We obtain a universal fitting formula that describes the (median) SFH of central galaxies as function of halo mass, galaxy stellar mass and redshift. We use this model to make predictions for various aspects of the star formation rates of central galaxies across cosmic time. Our main findings are the following. (1) The specific star formation rate (SSFR) at high $z$ increases rapidly with increasing redshift [$propto (1+z)^{2.5}$] for halos of a given mass and only slowly with halo mass ($propto M_h^{0.12}$) at a given $z$, in almost perfect agreement with the specific mass accretion rate of dark matter halos. (2) The ratio between the star formation rate (SFR) in the main-branch progenitor and the final stellar mass of a galaxy peaks roughly at a constant value, $sim 10^{-9.3} h^2 {rm yr}^{-1}$, independent of halo mass or the final stellar mass of the galaxy. However, the redshift at which the SFR peaks increases rapidly with halo mass. (3) More than half of the stars in the present-day Universe were formed in halos with $10^{11.1}msunh < M_h < 10^{12.3}msunh$ in the redshift range $0.4 < z < 1.9$. (4) ... [abridged]
85 - Ran Li , H.J. Mo , Zuhui Fan 2009
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy-galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. (2006) for the same samples of galaxies. The observational results are well reproduced in a $Lambda$CDM model based on the WMAP 3-year data, but a $Lambda$CDM model with higher $sigma_8$, such as the one based on the WMAP 1-year data,significantly over-predicts the galaxy-galaxy lensing signal. We model, separately, the contributions to the galaxy-galaxy lensing signals from different galaxies: central versus satellite, early-type versus late-type, and galaxies in halos of different masses. We also examine how the predicted galaxy-galaxy lensing signal depends on the shape, density profile, and the location of the central galaxy with respect to its host halo.
45 - Xiaohu Yang 2009
Using a large galaxy group catalogue constructed from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4) with an adaptive halo-based group finder, we investigate the luminosity and stellar mass functions for different populations of galaxies (cen tral versus satellite; red versus blue; and galaxies in groups of different masses) and for groups themselves. The conditional stellar mass function (CSMF), which describes the stellar distribution of galaxies in halos of a given mass for central and satellite galaxies can be well modeled with a log-normal distribution and a modified Schechter form, respectively. On average, there are about 3 times as many central galaxies as satellites. Among the satellite population, there are in general more red galaxies than blue ones. For the central population, the luminosity function is dominated by red galaxies at the massive end, and by blue galaxies at the low mass end. At the very low-mass end ($M_ast la 10^9 h^{-2}Msun$), however, there is a marked increase in the number of red centrals. We speculate that these galaxies are located close to large halos so that their star formation is truncated by the large-scale environments. The stellar-mass function of galaxy groups is well described by a double power law, with a characteristic stellar mass at $sim 4times 10^{10}h^{-2}Msun$. Finally, we use the observed stellar mass function of central galaxies to constrain the stellar mass - halo mass relation for low mass halos, and obtain $M_{ast, c}propto M_h^{4.9}$ for $M_h ll 10^{11} msunh$.
285 - H.Y. Wang , H.J. Mo , Y.P. Jing 2008
We develop a new method to reconstruct the cosmic density field from the distribution of dark matter haloes above a certain mass threshold. Our motivation is that well-defined samples of galaxy groups/clusters, which can be used to represent the dark halo population, can now be selected from large redshift surveys of galaxies, and our ultimate goal is to use such data to reconstruct the cosmic density field in the local universe. Our reconstruction method starts with a sample of dark matter haloes above a given mass threshold. Each volume element in space is assigned to the domain of the nearest halo according to a distance measure that is scaled by the virial radius of the halo. The distribution of the mass in and around dark matter haloes of a given mass is modelled using the cross-correlation function between dark matter haloes and the mass distribution within their domains. We use N-body cosmological simulations to show that the density profiles required in our reconstruction scheme can be determined reliably from large cosmological simulations, and that our method can reconstruct the density field accurately using haloes with masses down to $sim 10^{12}msun$ (above which samples of galaxy groups can be constructed from current large redshift surveys of galaxies). Working in redshift space, we demonstrate that the redshift distortions due to the peculiar velocities of haloes can be corrected in an iterative way. We also describe some applications of our method.
We use a modified version of the halo-based group finder developed by Yang et al. to select galaxy groups from the Sloan Digital Sky Survey (SDSS DR4). In the first step, a combination of two methods is used to identify the centers of potential group s and to estimate their characteristic luminosity. Using an iterative approach, the adaptive group finder then uses the average mass-to-light ratios of groups, obtained from the previous iteration, to assign a tentative mass to each group. This mass is then used to estimate the size and velocity dispersion of the underlying halo that hosts the group, which in turn is used to determine group membership in redshift space. Finally, each individual group is assigned two different halo masses: one based on its characteristic luminosity, and the other based on its characteristic stellar mass. Applying the group finder to the SDSS DR4, we obtain 301237 groups in a broad dynamic range, including systems of isolated galaxies. We use detailed mock galaxy catalogues constructed for the SDSS DR4 to test the performance of our group finder in terms of completeness of true members, contamination by interlopers, and accuracy of the assigned masses. This paper is the first in a series and focuses on the selection procedure, tests of the reliability of the group finder, and the basic properties of the group catalogue (e.g. the mass-to-light ratios, the halo mass to stellar mass ratios, etc.). The group catalogues including the membership of the groups are available at http://gax.shao.ac.cn/data/Group.html and http://www.astro.umass.edu/~xhyang/Group.html
114 - Yun Li , H.J. Mo , L. Gao 2008
In this paper we use the ``Millennium Simulation to re-examine the mass assembly history of dark matter halos and the age dependence of halo clustering. We use eight different definitions of halo formation times to characterize the different aspects of the assembly history of a dark matter halo. We find that these formation times have different dependence on halo mass. While some formation times characterize well the hierarchical nature of halo formation, in the sense that more massive halos have later formation, the trend is reversed for other definitions of the formation time. In particular, the formation times that are likely to be related to the formation of galaxies in dark halos show strong trends of ``down-sizing, in that lower-mass halos form later. We also investigate how the correlation amplitude of dark matter halos depends on the different formation times. We find that this dependence is quite strong for some definitions of formation time but weak or absent for other definitions. In particular, the correlation amplitude of halos of a given mass is almost independent of their last major merger time. For the definitions that are expected to be more related to the formation of galaxies in dark halos, a significant assembly bias is found only for halos less massive than M_*. We discuss our results in connection to the hierarchical assembly of dark matter halos, the ``archaeological down-sizing observed in the galaxy population, and the observed color-dependence of the clustering strength of galaxy groups and clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا