ترغب بنشر مسار تعليمي؟ اضغط هنا

49 - T. Ertl 2015
Thus far, judging the fate of a massive star (either a neutron star (NS) or a black hole) solely by its structure prior to core collapse has been ambiguous. Our work and previous attempts find a non-monotonic variation of successful and failed supern ovae with zero-age main-sequence mass, for which no single structural parameter can serve as a good predictive measure. However, we identify two parameters computed from the pre-collapse structure of the progenitor, which in combination allow for a clear separation of exploding and non-exploding cases with only few exceptions (~1-2.5%) in our set of 621 investigated stellar models. One parameter is M4, defining the normalized enclosed mass for a dimensionless entropy per nucleon of s=4, and the other is mu4 = d(m/M_sun)/d(r/1000 km) at s=4, being the normalized mass-derivative at this location. The two parameters mu4 and M4*mu4 can be directly linked to the mass-infall rate, Mdot, of the collapsing star and the electron-type neutrino luminosity of the accreting proto-NS, L_nue ~ M_ns*Mdot, which play a crucial role in the critical luminosity concept for the theoretical description of neutrino-driven explosions as runaway phenomenon of the stalled accretion shock. All models were evolved employing the approach of Ugliano et al. for simulating neutrino-driven explosions in spherical symmetry. The neutrino emission of the accretion layer is approximated by a gray transport solver, while the uncertain neutrino emission of the 1.1 M_sun proto-NS core is parametrized by an analytic model. The free parameters connected to the core-boundary prescription are calibrated to reproduce the observables of Supernova 1987A for five different progenitor models.
We present 3D simulations of supernova (SN) explosions of nonrotating stars, triggered by the neutrino-heating mechanism with a suitable choice of the core-neutrino luminosity. Our results show that asymmetric mass ejection caused by hydrodynamic ins tabilities can accelerate the neutron star (NS) up to recoil velocities of more than 700 km/s by the gravitational tug-boat mechanism, which is enough to explain most observed pulsar velocities. The associated NS spin periods are about 100 ms to 8 s without any correlation between spin and kick magnitudes or directions. This suggests that faster spins and a possible spin-kick alignment might require angular momentum in the progenitor core prior to collapse. Our simulations for the first time demonstrate a clear correlation between the size of the NS kick and anisotropic ejection of heavy elements created by explosive burning behind the shock. In the case of large NS kicks the explosion is significantly stronger opposite to the kick vector. Therefore the bulk of the Fe-group elements, in particular nickel, is ejected mostly in large clumps against the kick direction. This contrasts with the case of low recoil velocity, where the Ni-rich lumps are more isotropically distributed. Intermediate-mass nuclei heavier than Si (like Ca and Ti) also exhibit a significant enhancement in the hemisphere opposite to the direction of fast NS motion, while the distribution of C, O, and Ne is not affected, and that of Mg only marginally. Mapping the spatial distribution of the heavy elements in SN remnants with identified pulsar motion may offer an important diagnostic test of the kick mechanism. Different from kick scenarios based on anisotropic neutrino emission, our hydrodynamical acceleration model predicts enhanced ejection of Fe-group elements and of their nuclear precursors in the direction opposite to the NS recoil. (abridged)
35 - B. Mueller , 2012
The neutrino-driven explosion mechanism for core-collapse supernovae in its modern flavor relies on the additional support of hydrodynamical instabilities in achieving shock revival. Two possible candidates, convection and the so-called standing accr etion shock instability (SASI), have been proposed for this role. In this paper, we discuss new successful simulations of supernova explosions that shed light on the relative importance of these two instabilities. While convection has so far been observed to grow first in self-consistent hydrodynamical models with multi-group neutrino transport, we here present the first such simulation in which the SASI grows faster while the development of convection is initially inhibited. We illustrate the features of this SASI-dominated regime using an explosion model of a 27 solar mass progenitor, which is contrasted with a convectively-dominated model of an 8.1 solar mass progenitor with subsolar metallicity, whose early post-bounce behavior is more in line with previous 11.2 and 15 solar mass explosion models. We analyze the conditions discriminating between the two different regimes, showing that a high mass-accretion rate and a short advection time-scale are conducive for strong SASI activity. We also briefly discuss some important factors for capturing the SASI-driven regime, such as general relativity, the progenitor structure, a nuclear equation of state leading to a compact proto-neutron star, and the neutrino treatment. Finally, we evaluate possible implications of our findings for 2D and 3D supernova simulations. Our results show that a better understanding of the SASI and convection in the non-linear regime is required.
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using t he extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong non-radial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
We present a new general relativistic (GR) code for hydrodynamic supernova simulations with neutrino transport in spherical and azimuthal symmetry (1D/2D). The code is a combination of the CoCoNuT hydro module, which is a Riemann-solver based, high-r esolution shock-capturing method, and the three-flavor, energy-dependent neutrino transport scheme VERTEX. VERTEX integrates the neutrino moment equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the ray-by-ray plus approximation in 2D, assuming the neutrino distribution to be axially symmetric around the radial direction, and thus the neutrino flux to be radial. Our spacetime treatment employs the ADM 3+1 formalism with the conformal flatness condition for the spatial three-metric. This approach is exact in 1D and has been shown to yield very accurate results also for rotational stellar collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number with better accuracy and higher numerical stability. To verify our code, we conduct a series of tests, including a detailed comparison with published 1D results for stellar core collapse. Long-time simulations of proto-neutron star cooling over several seconds both demonstrate the robustness of the new CoCoNuT-VERTEX code and show the approximate treatment of GR effects by means of an effective gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in 1D. (abridged)
115 - L. Huedepohl 2009
An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nuc leon-nucleon correlations in the neutrino opacities. After a brief phase of accretion-enhanced luminosities (~200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of electron antineutrinos and muon/tau antineutrinos very similar. We discuss consequences for the neutrino-driven wind as a nucleosynthesis site and for flavor oscillations of SN neutrinos.
Context: Mergers of neutron stars (NS) and black holes (BH) are among the strongest sources of gravitational waves and are potential central engines for short gamma-ray bursts. Aims: We aim to compare the general relativistic (GR) results by other gr oups with Newtonian calculations of models with equivalent parameters. We vary the mass ratios between NS and BH and the compactness of the NS. The mass of the NS is 1.4 M_sol. We compare the dynamics in the parameter-space regions where the NS is expected to reach the innermost stable circular orbit (ISCO) before being tidally disrupted (mass shedding, MS) and vice versa. Methods: The hydrodynamics is evolved by a Newtonian PPM scheme with four levels of nested grids. We use a polytropic EoS (Gamma=2), as was done in the GR simulations. However, instead of full GR we use a Newtonian potential supplemented by a Paczynski-Wiita-Artemova potential for the BH, both disregarding and including rotation of the BH. Results: If the NS is compact (C=0.18) it is accreted by the BH more quickly, and only a small amount of mass remains outside the BH. If the mass ratio is small (Q=2 or 3) or the NS is less compact (C=0.16 or less) the NS is tidally torn apart before being accreted. Although most of the mass is absorbed by the BH, some 0.1 M_sol remain in a tidal arm. For small mass ratios the tidal arm can wrap around the BH to form a thick disk. When including the effects of BH spin-up or spin-down by the accreted matter, more mass remains in the surroundings (0.2-0.3 M_sol). Conclusions: Although details and quantitative results differ, the general trends of our Newtonian calculations are similar to the GR calculations. A clear delimiting line that separates ISCO from the MS cases is not found. Inclusion of BH rotation as well as sufficient numerical resolution are extremely important.
316 - A. Marek , H.-Th. Janka , 2009
We present 2D hydrodynamic simulations of the long-time accretion phase of a 15 solar mass star after core bounce and before the launch of a supernova explosion. Our simulations are performed with the Prometheus-Vertex code, employing multi-flavor, e nergy-dependent neutrino transport and an effective relativistic gravitational potential. Testing the influence of a stiff and a soft equation of state for hot neutron star matter, we find that the non-radial mass motions in the supernova core due to the standing accretion shock instability (SASI) and convection impose a time variability on the neutrino and gravitational-wave signals. These variations have larger amplitudes as well as higher frequencies in the case of a more compact nascent neutron star. After the prompt shock-breakout burst of electron neutrinos, a more compact accreting remnant radiates neutrinos with higher luminosities and larger mean energies. The observable neutrino emission in the direction of SASI shock oscillations exhibits a modulation of several 10% in the luminosities and ~1 MeV in the mean energies with most power at typical SASI frequencies of 20-100 Hz. At times later than 50-100 ms after bounce the gravitational-wave amplitude is dominated by the growing low-frequency (<200 Hz) signal associated with anisotropic neutrino emission. A high-frequency wave signal is caused by nonradial gas flows in the outer neutron star layers, which are stirred by anisotropic accretion from the SASI and convective regions. The gravitational-wave power then peaks at about 300-800 Hz with distinctively higher spectral frequencies originating from the more compact and more rapidly contracting neutron star. The detectability of the SASI effects in the neutrino and gravitational-wave signals is briefly discussed. (abridged)
We examine nucleosynthesis in the electron capture supernovae of progenitor AGB stars with an O-Ne-Mg core (with the initial stellar mass of 8.8 M_odot). Thermodynamic trajectories for the first 810 ms after core bounce are taken from a recent state- of-the-art hydrodynamic simulation. The presented nucleosynthesis results are characterized by a number of distinct features that are not shared with those of other supernovae from the collapse of stars with iron core (with initial stellar masses of more than 10 M_odot). First is the small amount of 56Ni (= 0.002-0.004 M_odot) in the ejecta, which can be an explanation for observed properties of faint supernovae such as SNe 2008S and 1997D. In addition, the large Ni/Fe ratio is in reasonable agreement with the spectroscopic result of the Crab nebula (the relic of SN 1054). Second is the large production of 64Zn, 70Ge, light p-nuclei (74Se, 78Kr, 84Sr, and 92Mo), and in particular, 90Zr, which originates from the low Y_e (= 0.46-0.49, the number of electrons per nucleon) ejecta. We find, however, that only a 1-2% increase of the minimum Y_e moderates the overproduction of 90Zr. In contrast, the production of 64Zn is fairly robust against a small variation of Y_e. This provides the upper limit of the occurrence of this type of events to be about 30% of all core-collapse supernovae.
157 - A. Bauswein 2008
We determine the Galactic production rate of strangelets as a canonical input to calculations of the measurable cosmic ray flux of strangelets by performing simulations of strange star mergers and combining the results with recent estimates of stella r binary populations. We find that the flux depends sensitively on the bag constant of the MIT bag model of QCD and disappears for high values of the bag constant and thus more compact strange stars. In the latter case strange stars could coexist with ordinary neutron stars as they are not converted by the capture of cosmic ray strangelets. An unambiguous detection of an ordinary neutron star would then not rule out the strange matter hypothesis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا